A two-component variant of the famous result on equilibration in scalar Fokker-Planck equations

Daniel Matthes (TU München) Joint work with: Lisa Beck (Augsburg) and Martina Zizza (SISSA)

> Workshop "OT and Physics" Somewhere in the French Alps 13.–17.03.2023

Diffusion, systems, convergence (and our humble contribution)

The non-linear Fokker-Planck equation

$$
\partial_t \rho = \Delta(\rho^m) + \lambda \nabla \cdot (x \rho)
$$

The non-linear Fokker-Planck equation

$$
\partial_t \rho = \Delta(\rho^m) + \lambda \nabla \cdot (x \rho)
$$

has the stationary solution

$$
\bar{\rho}(x) = (A - B|x|^2)_+^{1/(m-1)}
$$

The non-linear Fokker-Planck equation

$$
\partial_t \rho = \Delta(\rho^m) + \lambda \nabla \cdot (x \rho)
$$

has the stationary solution

$$
\bar{\rho}(x) = (A - B|x|^2)_+^{1/(m-1)}
$$

and the Lyapunov functional

$$
\mathbf{L}(\rho) = \int_{\mathbb{R}^d} \left[\frac{\rho(x)^m}{m-1} + \frac{\lambda}{2} |x|^2 \rho(x) \right] dx - L.
$$

The non-linear Fokker-Planck equation

$$
\partial_t \rho = \Delta(\rho^m) + \lambda \nabla \cdot (x \rho)
$$

has the stationary solution

$$
\bar{\rho}(x) = (A - B|x|^2)_+^{1/(m-1)}
$$

and the Lyapunov functional

$$
\mathbf{L}(\rho) = \int_{\mathbb{R}^d} \left[\frac{\rho(x)^m}{m-1} + \frac{\lambda}{2} |x|^2 \rho(x) \right] dx - L.
$$

Theorem ([Otto'01,Carrillo&Toscani'00,Dolbeault&DelPino'02])

The entropy is dissipated exponentially fast,

 $\mathbf{L}(\rho(t)) \leq \mathbf{L}(\rho(0)) \exp(-2\lambda t),$

and consequently,

$$
\left\|\rho(t)-\bar{\rho}\right\|_{L^1(\mathbb{R}^d)} \leq C \, \exp(-\lambda t).
$$

The non-linear Fokker-Planck equation

$$
\partial_t \rho = \Delta(\rho^m) + \lambda \nabla \cdot (x \rho)
$$

has the stationary solution

$$
\bar{\rho}(x) = (A - B|x|^2)_+^{1/(m-1)}
$$

and the Lyapunov functional

$$
\mathbf{L}(\rho) = \int_{\mathbb{R}^d} \left[\frac{\rho(x)^m}{m-1} + \frac{\lambda}{2} |x|^2 \rho(x) \right] dx - L.
$$

Later: Zillons of generalizations, e.g. [AGS'05, CJMTU'01]

- $\rho^m \rightsquigarrow f(\rho)$ subject to McCann's condition;
- $\lambda x \rightsquigarrow \nabla V(x)$ with $\nabla^2 V > \lambda \mathbf{1}$;
- add $\nabla \cdot (\rho \nabla W * \rho)$ with $\nabla^2 W \ge 0$.

What about coupled systems?

$$
\partial_t \rho_1 = \Delta(\rho_1^m) + \nabla \cdot (\rho_1 \nabla V_1) + \Delta h_1(\rho_1, \rho_2) + g_1(\rho_1, \rho_2) + \cdots ,
$$

\n
$$
\partial_t \rho_2 = \Delta(\rho_2^m) + \nabla \cdot (\rho_2 \nabla V_2) + \Delta h_1(\rho_1, \rho_2) + g_2(\rho_1, \rho_2) + \cdots .
$$

There are numerous results on exponential convergence to ...

- ... homogeneous steady states, for diagonal diffusion e.g. [Desvillettes&Fellner'06], [Fellner&Latos&Tang'20]
- . . . homogeneous steady states, for cross–diffusion e.g. [Jüngel&Zamponi'17], [Daus&Jüngel&Tang'19]
- . . . inhomogeneous steady states, for diagonal linear diffusion e.g. [Di Francesco&Fellner&Markowich'08], [Hittmeir&Haskovec&Markowich&Mielke'18]

Seek non-negative unit-mass solutions $\boldsymbol{\rho} = (\rho_1, \rho_2)$ on \mathbb{R}^d to

$$
\partial_t \rho_1 = \Delta(\rho_1^m) + \nabla \cdot (\rho_1 \nabla [V_1 + \varepsilon \partial_1 H(\rho_1, \rho_2)])
$$

$$
\partial_t \rho_2 = \Delta(\rho_2^m) + \nabla \cdot (\rho_2 \nabla [V_2 + \varepsilon \partial_2 H(\rho_1, \rho_2)])
$$

A Lyapunov functional is given by

$$
\mathbf{E}^{\varepsilon}(\boldsymbol{\rho}) = \int_{\mathbb{R}^d} \left[\frac{\rho_1^m + \rho_2^m}{m-1} + V_1 \rho_1 + V_2 \rho_2 + \varepsilon H(\rho_1, \rho_2) \right] dx - E^{\varepsilon}.
$$

Seek non-negative unit-mass solutions $\boldsymbol{\rho} = (\rho_1, \rho_2)$ on \mathbb{R}^d to

$$
\partial_t \rho_1 = \Delta(\rho_1^m) + \nabla \cdot (\rho_1 \nabla [V_1 + \varepsilon \partial_1 H(\rho_1, \rho_2)])
$$

$$
\partial_t \rho_2 = \Delta(\rho_2^m) + \nabla \cdot (\rho_2 \nabla [V_2 + \varepsilon \partial_2 H(\rho_1, \rho_2)])
$$

where

- $m > 2$,
- \bullet H has "relatively bounded" derivates and is "relatively flat", $\bullet \nabla^2 V_i \geq \lambda \mathbf{1}$ with $\lambda > 0$.

Seek non-negative unit-mass solutions $\boldsymbol{\rho} = (\rho_1, \rho_2)$ on \mathbb{R}^d to

$$
\partial_t \rho_1 = \Delta(\rho_1^m) + \nabla \cdot (\rho_1 \nabla [V_1 + \varepsilon \partial_1 H(\rho_1, \rho_2)])
$$

$$
\partial_t \rho_2 = \Delta(\rho_2^m) + \nabla \cdot (\rho_2 \nabla [V_2 + \varepsilon \partial_2 H(\rho_1, \rho_2)])
$$

where

- $m > 2$,
- \bullet H has "relatively bounded" derivates and is "relatively flat", $\bullet \nabla^2 V_i > \lambda \mathbf{1}$ with $\lambda > 0$.

Theorem ([Beck&M&Zizza'22])

For all $\varepsilon > 0$ small enough:

- unique stationary solution $\bar{\rho} = (\bar{\rho}_1, \bar{\rho}_2);$
- weak transient solution ρ for reasonable initial data ρ_0 ;
- $\mathbf{E}^{\varepsilon}(\boldsymbol{\rho}(t)) \leq \mathbf{E}^{\varepsilon}(\boldsymbol{\rho}(0)) \exp(-2\lambda(1-K\varepsilon)t).$

Seek non-negative unit-mass solutions $\boldsymbol{\rho} = (\rho_1, \rho_2)$ on \mathbb{R}^d to

$$
\partial_t \rho_1 = \Delta(\rho_1^m) + \nabla \cdot (\rho_1 \nabla [V_1 + \varepsilon \partial_1 H(\rho_1, \rho_2)])
$$

$$
\partial_t \rho_2 = \Delta(\rho_2^m) + \nabla \cdot (\rho_2 \nabla [V_2 + \varepsilon \partial_2 H(\rho_1, \rho_2)])
$$

e.g. where

\n- $$
m \geq 2
$$
,
\n- $H(\rho_1, \rho_2) = \left(\frac{\rho_1 \rho_2}{1 + \rho_1 + \rho_2}\right)^m$,
\n- $V_j(x) = \frac{\lambda}{2} |x - \bar{x}_j|^2$,
\n

Theorem ([Beck&M&Zizza'22])

For all $\varepsilon > 0$ small enough:

- unique stationary solution $\bar{\rho} = (\bar{\rho}_1, \bar{\rho}_2);$
- weak transient solution ρ for reasonable initial data ρ_0 ;
- $\mathbf{E}^{\varepsilon}(\boldsymbol{\rho}(t)) \leq \mathbf{E}^{\varepsilon}(\boldsymbol{\rho}(0)) \exp(-2\lambda(1-K\varepsilon)t).$

Left: Steady state for $\varepsilon = 0$. Right: steady state for $\varepsilon > 0$.

Convexity (and total loss thereof)

Recall: gradient flow in the L^2 -Wasserstein metric W_2

$$
\mathbf{L}(\rho) = \int_{\mathbb{R}^d} \left[\frac{\rho^m}{m-1} + V \rho \right] \mathrm{d}x - L \quad \leadsto \quad \partial_t \rho = \Delta(\rho^m) + \nabla \cdot (\rho \nabla V).
$$

Recall: gradient flow in the L^2 -Wasserstein metric W_2

$$
\mathbf{L}(\rho) = \int_{\mathbb{R}^d} \left[\frac{\rho^m}{m-1} + V\rho \right] \mathrm{d}x - L \quad \leadsto \quad \partial_t \rho = \Delta(\rho^m) + \nabla \cdot (\rho \nabla V).
$$

Dissipation:

$$
-\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{L}(\rho) = |\partial \mathbf{L}|^2(\rho) = \int_{\mathbb{R}^d} \rho \left| \nabla \left[\frac{m}{m-1} \rho^{m-1} + V \right] \right|^2 \mathrm{d}x.
$$

Recall: gradient flow in the L^2 -Wasserstein metric W_2

$$
\mathbf{L}(\rho) = \int_{\mathbb{R}^d} \left[\frac{\rho^m}{m-1} + V \rho \right] \mathrm{d}x - L \quad \leadsto \quad \partial_t \rho = \Delta(\rho^m) + \nabla \cdot (\rho \nabla V).
$$

Dissipation:

$$
-\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{L}(\rho) = |\partial \mathbf{L}|^2(\rho) = \int_{\mathbb{R}^d} \rho \left| \nabla \left[\frac{m}{m-1} \rho^{m-1} + V \right] \right|^2 \mathrm{d}x.
$$

Theorem ([Otto'01,Carrillo&Toscani'00,Dolbeault&DelPino'02]) If $\nabla^2 V \ge \lambda$, then $\mathbf{L}(\rho(t)) \to 0$ at exponential rate 2λ because $|\partial \mathbf{L}|^2 \geq 2\lambda \mathbf{L}.$ (*)

Recall: gradient flow in the L^2 -Wasserstein metric W_2

$$
\mathbf{L}(\rho) = \int_{\mathbb{R}^d} \left[\frac{\rho^m}{m-1} + V \rho \right] \mathrm{d}x - L \quad \leadsto \quad \partial_t \rho = \Delta(\rho^m) + \nabla \cdot (\rho \nabla V).
$$

Dissipation:

$$
-\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{L}(\rho) = |\partial \mathbf{L}|^2(\rho) = \int_{\mathbb{R}^d} \rho \left| \nabla \left[\frac{m}{m-1} \rho^{m-1} + V \right] \right|^2 \mathrm{d}x.
$$

Theorem ([Otto'01,Carrillo&Toscani'00,Dolbeault&DelPino'02])

If $\nabla^2 V \geq \lambda$, then $\mathbf{L}(\rho(t)) \to 0$ at exponential rate 2λ because

$$
|\partial \mathbf{L}|^2 \ge 2\lambda \mathbf{L}.\tag{*}
$$

Theorem ([Otto'01,Carrillo&McCann&Villani'03,AGS'05])

 $\nabla^2 V \ge \lambda \Rightarrow$ L is λ -uniformly displacement convex \Rightarrow $(*)$

Gradient flow interpretation

$$
\partial_t \rho_1 = \Delta(\rho_1^m) + \nabla \cdot (\rho_1 \nabla [V_1 + \varepsilon \partial_1 H(\rho_1, \rho_2)])
$$

$$
\partial_t \rho_2 = \Delta(\rho_2^m) + \nabla \cdot (\rho_2 \nabla [V_2 + \varepsilon \partial_2 H(\rho_1, \rho_2)])
$$

is a gradient flow in the compound metric

$$
d(\rho, \rho')^2 = W_2(\rho_1, \rho'_1)^2 + W_2(\rho_2, \rho'_2)^2
$$

for the energy

$$
\mathbf{E}^{\varepsilon}(\boldsymbol{\rho}) = \int_{\mathbb{R}^d} \left[\frac{\rho_1^m + \rho_2^m}{m-1} + V_1 \rho_1 + V_2 \rho_2 + \varepsilon H(\rho_1, \rho_2) \right] dx - E^{\varepsilon}.
$$

Gradient flow interpretation

$$
\partial_t \rho_1 = \Delta(\rho_1^m) + \nabla \cdot (\rho_1 \nabla [V_1 + \varepsilon \partial_1 H(\rho_1, \rho_2)])
$$

$$
\partial_t \rho_2 = \Delta(\rho_2^m) + \nabla \cdot (\rho_2 \nabla [V_2 + \varepsilon \partial_2 H(\rho_1, \rho_2)])
$$

is a gradient flow in the compound metric

$$
d(\rho, \rho')^2 = W_2(\rho_1, \rho'_1)^2 + W_2(\rho_2, \rho'_2)^2
$$

for the energy

$$
\mathbf{E}^{\varepsilon}(\boldsymbol{\rho}) = \int_{\mathbb{R}^d} \left[\frac{\rho_1^m + \rho_2^m}{m-1} + V_1 \rho_1 + V_2 \rho_2 + \varepsilon H(\rho_1, \rho_2) \right] dx - E^{\varepsilon}.
$$

Question

 $|\partial \mathbf{E}^{\varepsilon}|^2 \geq 2\lambda^{\varepsilon} \mathbf{E}^{\varepsilon}$?

Gradient flow interpretation

$$
\partial_t \rho_1 = \Delta(\rho_1^m) + \nabla \cdot (\rho_1 \nabla [V_1 + \varepsilon \partial_1 H(\rho_1, \rho_2)])
$$

$$
\partial_t \rho_2 = \Delta(\rho_2^m) + \nabla \cdot (\rho_2 \nabla [V_2 + \varepsilon \partial_2 H(\rho_1, \rho_2)])
$$

is a gradient flow in the compound metric

$$
d(\rho, \rho')^2 = W_2(\rho_1, \rho'_1)^2 + W_2(\rho_2, \rho'_2)^2
$$

for the energy

$$
\mathbf{E}^{\varepsilon}(\boldsymbol{\rho}) = \int_{\mathbb{R}^d} \left[\frac{\rho_1^m + \rho_2^m}{m-1} + V_1 \rho_1 + V_2 \rho_2 + \varepsilon H(\rho_1, \rho_2) \right] dx - E^{\varepsilon}.
$$

Question

$$
|\partial \mathbf{E}^\varepsilon|^2 \geq 2\lambda^\varepsilon \mathbf{E}^\varepsilon \ ?
$$

Partial (yet quite discouraging) answer

Our assumptions make \mathbf{E}^{ε} (flat) convex for each small $\varepsilon > 0$. But: \mathbf{E}_{ε} is not displacement semi-convex, not for any $\varepsilon > 0$.

$$
\mathbf{E}^{\varepsilon}(\boldsymbol{\rho}) = \int_{\mathbb{R}^d} \left[\frac{\rho_1^m + \rho_2^m}{m-1} + V_1 \rho_1 + V_2 \rho_2 + \varepsilon H(\rho_1, \rho_2) \right] dx - E^{\varepsilon}.
$$

Lemma

For $\varepsilon = 0$: λ -uniform geodesic convexity. For any $\varepsilon > 0$: failure of μ -uniform displacement convexity, for all $\mu \in \mathbb{R}$.

$$
\mathbf{E}^{\varepsilon}(\boldsymbol{\rho}) = \int_{\mathbb{R}^d} \left[\frac{\rho_1^m + \rho_2^m}{m-1} + V_1 \rho_1 + V_2 \rho_2 + \varepsilon H(\rho_1, \rho_2) \right] dx - E^{\varepsilon}.
$$

Lemma

For $\varepsilon = 0$: λ -uniform geodesic convexity. For any $\varepsilon > 0$: failure of μ -uniform displacement convexity, for all $\mu \in \mathbb{R}$.

Reason for loss of convexity: consider d-geodesics

$$
[\tau_s \rho](x) = (\rho_1(x - s\mathbf{e}), \rho_2(x)).
$$

Choosing locally oscillatory ρ_1, ρ_2 , the integral

$$
\left. \frac{\mathrm{d}^2}{\mathrm{d}^2 s} \right|_{s=0} \mathbf{E}^{\varepsilon}(\tau_s \boldsymbol{\rho}) \approx -\varepsilon \int_{\mathbb{R}^d} \partial_1 \partial_2 H(\boldsymbol{\rho}) \, \partial_{\mathbf{e}} \rho_1 \, \partial_{\mathbf{e}} \rho_2 \, \mathrm{d}x
$$

can be made arbitrarily negative.

$$
\mathbf{E}^{\varepsilon}(\boldsymbol{\rho}) = \int_{\mathbb{R}^d} \left[\frac{\rho_1^m + \rho_2^m}{m-1} + V_1 \rho_1 + V_2 \rho_2 + \varepsilon H(\rho_1, \rho_2) \right] dx - E^{\varepsilon}.
$$

Lemma

For $\varepsilon = 0$: λ -uniform geodesic convexity. For any $\varepsilon > 0$: failure of μ -uniform displacement convexity, for all $\mu \in \mathbb{R}$.

Put high frequency oscillations near \hat{x} with $\partial_1 \partial_2 H(\rho_1(\hat{x}), \rho_2(\hat{x})) \neq 0$.

$$
\mathbf{E}^{\varepsilon}(\boldsymbol{\rho}) = \int_{\mathbb{R}^d} \left[\frac{\rho_1^m + \rho_2^m}{m-1} + V_1 \rho_1 + V_2 \rho_2 + \varepsilon H(\rho_1, \rho_2) \right] dx - E^{\varepsilon}.
$$

Lemma

For $\varepsilon = 0$: λ -uniform geodesic convexity. For any $\varepsilon > 0$: failure of μ -uniform displacement convexity, for all $\mu \in \mathbb{R}$.

Corollary

No standard route to

 $|\partial \mathbf{E}^{\varepsilon}|^2 \geq 2\lambda \mathbf{E}^{\varepsilon}.$

$$
\mathbf{E}^{\varepsilon}(\boldsymbol{\rho}) = \int_{\mathbb{R}^d} \left[\frac{\rho_1^m + \rho_2^m}{m-1} + V_1 \rho_1 + V_2 \rho_2 + \varepsilon H(\rho_1, \rho_2) \right] dx - E^{\varepsilon}.
$$

Lemma

For $\varepsilon = 0$: λ -uniform geodesic convexity. For any $\varepsilon > 0$: failure of μ -uniform displacement convexity, for all $\mu \in \mathbb{R}$.

What about a change of metric?

- For certain reaction diffusion systems, long-time-asymptotics do follow via geodesic convexity, see e.g. [Liero&Mielke'13, Mielke&Mittnenzweig'18].
- Apparently, drift-(cross-)diffusion systems cannot be written as uniformly contractive gradient flows, see e.g. [Zinsl&M'15].

$|\partial \mathbf{E}^\varepsilon|^2 \geq 2\lambda$ \mathbf{E}^{ε} .

$$
|\partial \mathbf{E}^{\varepsilon}|^2 \geq 2\lambda (1 - K\varepsilon) \mathbf{E}^{\varepsilon}.
$$

This seems no (trivial consequence of a) textbook inequality:

- **1** multiple components with nonlinear interaction,
- \bullet ε -dependent, compactly supported minimizers,
- $\textbf{3}$ on the whole $\mathbb{R}^d.$

$$
|\partial \mathbf{E}^{\varepsilon}|^2 \geq 2\lambda (1 - K\varepsilon) \mathbf{E}^{\varepsilon}.
$$

This seems no (trivial consequence of a) textbook inequality:

- **1** multiple components with nonlinear interaction,
- \bullet ε -dependent, compactly supported minimizers,
- $\textbf{3}$ on the whole $\mathbb{R}^d.$

In a friendlier environment (bounded domain and $m = 1$), such inequalities follow by "hands on" methods, see e.g. [Alasio&Ranetbauer&Schmidtchen&Wolfram'20].

The technical slides

Transient solutions

Theorem

The time-discrete approximation via JKO,

$$
\boldsymbol{\rho}^n := \operatorname*{argmin}_{\boldsymbol{\rho}} \left(\frac{1}{2\tau}\mathrm{d}(\boldsymbol{\rho}, \boldsymbol{\rho}^{n-1})^2 + \mathbf{E}^{\varepsilon}(\boldsymbol{\rho}) \right),
$$

converge to a weak solution $\rho^* = (\rho_1^*, \rho_2^*)$.

Transient solutions

Theorem

The time-discrete approximation via JKO,

$$
\pmb{\rho}^n := \underset{\pmb{\rho}}{\text{argmin}} \left(\frac{1}{2\tau}\mathrm{d}(\pmb{\rho},\pmb{\rho}^{n-1})^2 + \mathbf{E}^\varepsilon(\pmb{\rho}) \right),
$$

converge to a weak solution $\rho^* = (\rho_1^*, \rho_2^*)$.

Proof:

- Limit ρ^* exists by energy arguments. Really a weak solution?
- Solution concept requires derivatives of nonlinearities, weak convergence of $\nabla \partial_i H(\rho)$ needed.
- For a priori estimates, combine variations "along evolution" and "along heat flow",

$$
\int_0^T\int_{\mathbb{R}^d} \rho_j |\nabla \rho_j^{m-1}|^2 \leq C \quad \text{and} \quad \int_0^T\int_{\mathbb{R}^d} e^{-\rho_j} |\nabla \rho_j^{m-1}|^2 \leq C.
$$

Theorem

There is a unique minimizer $\bar{\rho} = (\bar{\rho}_1, \bar{\rho}_2)$ of \mathbf{E}_{ε} . The support of $\bar{\rho}_j$ and the C^2 -norm of $\partial_j H(\bar{\rho})$ are controlled, uniformly for small $\varepsilon > 0$.

Proof:

- Existence by direct methods.
- $\bar\rho_j$'s support is $\{V_j\leq \bar V_j\}.$
- Euler-Lagrange equations are:

$$
\bar{\rho}_1^{m-1} + \varepsilon \partial_1 H(\bar{\mathbf{p}}) = (\bar{V}_1 - V_1)_+
$$

$$
\bar{\rho}_2^{m-1} + \varepsilon \partial_2 H(\bar{\mathbf{p}}) = (\bar{V}_2 - V_2)_+
$$

Regularity via IFT.

Instead of a linearization

Introduce the "convex expansion" of

$$
\mathbf{E}^{\varepsilon}(\boldsymbol{\rho}) = \int_{\mathbb{R}^d} \left[\frac{\rho_1^m + \rho_2^m}{m - 1} + V_1 \rho_1 + V_2 \rho_2 + \varepsilon H(\rho_1, \rho_2) \right] dx
$$

around the steady state $\bar{\rho}$:

$$
\label{eq:2.1} \begin{split} \mathbf{L}^\varepsilon(\pmb{\rho}) :=& \int_{\mathbb{R}^d} \Big[\frac{\rho_1^m}{m-1} + V_1^\varepsilon \rho_1 + \frac{\rho_2^m}{m-1} + V_2^\varepsilon \rho_2 \Big]\,\mathrm{d} x - L^\varepsilon\\ \text{with } V_j^\varepsilon :=& V_j + \varepsilon \partial_j H(\bar{\pmb{\rho}}). \end{split}
$$

Instead of a linearization

Introduce the "convex expansion" of

$$
\mathbf{E}^{\varepsilon}(\boldsymbol{\rho}) = \int_{\mathbb{R}^d} \left[\frac{\rho_1^m + \rho_2^m}{m - 1} + V_1 \rho_1 + V_2 \rho_2 + \varepsilon H(\rho_1, \rho_2) \right] dx
$$

around the steady state $\bar{\rho}$:

$$
\mathbf{L}^{\varepsilon}(\boldsymbol{\rho}) := \int_{\mathbb{R}^d} \left[\frac{\rho_1^m}{m-1} + V_1^{\varepsilon} \rho_1 + \frac{\rho_2^m}{m-1} + V_2^{\varepsilon} \rho_2 \right] dx - L^{\varepsilon}
$$

with $V_j^{\varepsilon} := V_j + \varepsilon \partial_j H(\bar{\boldsymbol{\rho}}).$

Corollary

$$
\nabla^2 V_j^{\varepsilon} \ge 2\lambda (1 - K_1 \varepsilon) \mathbf{1}, \text{ and so } |\partial \mathbf{L}^{\varepsilon}|^2 \ge 2\lambda (1 - K_1 \varepsilon) \mathbf{L}^{\varepsilon}.
$$

Splitting

Split

$$
\mathbf{E}^{\varepsilon}(\boldsymbol{\rho}) = \int_{\mathbb{R}^d} \left[\frac{\rho_1^m + \rho_2^m}{m - 1} + V_1 \rho_1 + V_2 \rho_2 + \varepsilon H(\rho) \right] dx - E^{\varepsilon}
$$

= $\mathbf{L}^{\varepsilon}(\boldsymbol{\rho}) + \varepsilon \mathbf{A}^{\varepsilon}(\boldsymbol{\rho})$

with

$$
\mathbf{A}^{\varepsilon}(\boldsymbol{\rho}) = \int_{\mathbb{R}^d} \left[H(\boldsymbol{\rho}) - H(\bar{\boldsymbol{\rho}}) - (\boldsymbol{\rho} - \bar{\boldsymbol{\rho}}) \cdot \mathrm{D}H(\bar{\boldsymbol{\rho}}) \right] \mathrm{d}x.
$$

Splitting

Split

$$
\mathbf{E}^{\varepsilon}(\boldsymbol{\rho}) = \int_{\mathbb{R}^d} \left[\frac{\rho_1^m + \rho_2^m}{m - 1} + V_1 \rho_1 + V_2 \rho_2 + \varepsilon H(\rho) \right] dx - E^{\varepsilon}
$$

= $\mathbf{L}^{\varepsilon}(\boldsymbol{\rho}) + \varepsilon \mathbf{A}^{\varepsilon}(\boldsymbol{\rho})$

with

$$
\mathbf{A}^{\varepsilon}(\boldsymbol{\rho}) = \int_{\mathbb{R}^d} \left[H(\boldsymbol{\rho}) - H(\bar{\boldsymbol{\rho}}) - (\boldsymbol{\rho} - \bar{\boldsymbol{\rho}}) \cdot \mathrm{D} H(\bar{\boldsymbol{\rho}}) \right] \mathrm{d}x.
$$

Then:

$$
|\partial \mathbf{E}^{\varepsilon}|^{2} \ge (1 - K_{2}\varepsilon)|\partial \mathbf{L}^{\varepsilon}|^{2} - \frac{\varepsilon}{K_{2}}|\partial \mathbf{A}^{\varepsilon}|^{2}
$$

= $(1 - 2K_{2}\varepsilon)|\partial \mathbf{L}^{\varepsilon}|^{2} + \frac{\varepsilon}{K_{2}}(K_{2}^{2}|\partial \mathbf{L}^{\varepsilon}|^{2} - |\partial \mathbf{A}^{\varepsilon}|^{2})$
 $\ge (1 - 2K_{2}\varepsilon) \cdot 2\lambda(1 - K_{1}\varepsilon)\mathbf{L}^{\varepsilon} + 0$
 $\ge 2\lambda(1 - K\varepsilon)\mathbf{E}^{\varepsilon}.$

A similar story

A chemotaxis model

$$
\partial_t \rho = \Delta \rho^2 + \nabla \cdot (\rho \nabla [V + \varepsilon \phi(c)])
$$

$$
\partial_t c = \Delta c - \kappa c - \varepsilon \phi'(c) \rho.
$$

A chemotaxis model

$$
\partial_t \rho = \Delta \rho^2 + \nabla \cdot (\rho \nabla [V + \varepsilon \phi(c)])
$$

$$
\partial_t c = \Delta c - \kappa c - \varepsilon \phi'(c) \rho.
$$

is the gradient flow of

$$
\mathbf{E}^{\varepsilon}(\rho, c) = \int_{\mathbb{R}^d} \left[2\rho^2 + V\rho + \frac{1}{2} |\nabla c|^2 + \frac{\kappa}{2} c^2 + \varepsilon \phi(c)\rho \right] dx
$$

w.r.t. the compound metric

$$
d((\rho, c), (\rho', c'))^{2} = W_{2}(\rho, \rho')^{2} + ||c - c'||_{L^{2}}^{2}.
$$

A chemotaxis model

$$
\partial_t \rho = \Delta \rho^2 + \nabla \cdot (\rho \nabla [V + \varepsilon \phi(c)])
$$

$$
\partial_t c = \Delta c - \kappa c - \varepsilon \phi'(c) \rho.
$$

is the gradient flow of

$$
\mathbf{E}^{\varepsilon}(\rho, c) = \int_{\mathbb{R}^d} \left[2\rho^2 + V\rho + \frac{1}{2} |\nabla c|^2 + \frac{\kappa}{2} c^2 + \varepsilon \phi(c)\rho \right] dx
$$

w.r.t. the compound metric

$$
d((\rho, c), (\rho', c'))^{2} = W_{2}(\rho, \rho')^{2} + ||c - c'||_{L^{2}}^{2}.
$$

Theorem ([Zinsl&M'15])

Suppose $\nabla^2 V > \kappa \mathbf{1}$. Then for each $\varepsilon > 0$ small enough:

 $\mathbf{E}^{\varepsilon}(\rho(t),c(t)) \leq \mathbf{E}^{\varepsilon}(\rho(0),c(0)) \exp(2(\kappa - K\varepsilon)t).$

The road ahead:

- Understand gap between failure of $|\partial \mathbf{E}_\varepsilon|^2 \geq 2\lambda (1-K\varepsilon) \mathbf{E}_\varepsilon$ and failure of (flat) convexity.
- Repeat for non-local interaction $\iint K(x,y)\rho_1(x)\rho_2(y)\,\mathrm{d}x\,\mathrm{d}y$ in place of $\int [V_1 \rho_1 + V_2 \rho_2] dx$.
- Pass from second to fourth order.

Thank you!