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Coming up next

Diffusion, systems, convergence
(and our humble contribution)



In the beginning. . .

The non-linear Fokker-Planck equation

∂tρ = ∆(ρm) + λ∇ · (xρ)

has the stationary solution

ρ̄(x) =
(
A−B|x|2

)1/(m−1)
+

and the Lyapunov functional

L(ρ) =

ˆ
Rd

[
ρ(x)m

m− 1
+
λ

2
|x|2ρ(x)

]
dx− L.
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Theorem ([Otto’01,Carrillo&Toscani’00,Dolbeault&DelPino’02])

The entropy is dissipated exponentially fast,

L(ρ(t)) ≤ L(ρ(0)) exp(−2λt),

and consequently, ∥∥ρ(t)− ρ̄
∥∥
L1(Rd)

≤ C exp(−λt).
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|x|2ρ(x)

]
dx− L.

Later: Zillons of generalizations, e.g. [AGS’05,CJMTU’01]

ρm  f(ρ) subject to McCann’s condition;

λx ∇V (x) with ∇2V ≥ λ1;

add ∇ · (ρ∇W ∗ ρ) with ∇2W ≥ 0.



Scalar to systems

What about coupled systems?

∂tρ1 = ∆(ρm1 ) +∇ · (ρ1∇V1) + ∆h1(ρ1, ρ2) + g1(ρ1, ρ2) + · · · ,
∂tρ2 = ∆(ρm2 ) +∇ · (ρ2∇V2) + ∆h1(ρ1, ρ2) + g2(ρ1, ρ2) + · · · .

There are numerous results on exponential convergence to . . .

. . . homogeneous steady states, for diagonal diffusion
e.g. [Desvillettes&Fellner’06], [Fellner&Latos&Tang’20]

. . . homogeneous steady states, for cross–diffusion
e.g. [Jüngel&Zamponi’17], [Daus&Jüngel&Tang’19]

. . . inhomogeneous steady states, for diagonal linear diffusion
e.g. [Di Francesco&Fellner&Markowich’08],
[Hittmeir&Haskovec&Markowich&Mielke’18]



Our contribution

Seek non-negative unit-mass solutions ρ = (ρ1, ρ2) on Rd to

∂tρ1 = ∆(ρm1 ) +∇ ·
(
ρ1∇[V1 + ε∂1H(ρ1, ρ2)]

)
∂tρ2 = ∆(ρm2 ) +∇ ·

(
ρ2∇[V2 + ε∂2H(ρ1, ρ2)]

)
A Lyapunov functional is given by

Eε(ρ) =

ˆ
Rd

[ρm1 + ρm2
m− 1

+ V1ρ1 + V2ρ2 + εH(ρ1, ρ2)
]

dx− Eε.

Theorem ([Beck&M&Zizza’22])

For all ε ≥ 0 small enough:

unique stationary solution ρ̄ = (ρ̄1, ρ̄2);

weak transient solution ρ for reasonable initial data ρ0;

Eε(ρ(t)) ≤ Eε(ρ(0)) exp
(
− 2λ(1−Kε)t

)
.
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.



Steady states

Left: Steady state for ε = 0. Right: steady state for ε > 0.



Coming up next

Convexity
(and total loss thereof)



The convexity behind it all

Recall: gradient flow in the L2-Wasserstein metric W2

L(ρ) =

ˆ
Rd

[ ρm

m− 1
+ V ρ

]
dx− L  ∂tρ = ∆(ρm) +∇ · (ρ∇V ).

Dissipation:

− d

dt
L(ρ) = |∂L|2(ρ) =

ˆ
Rd

ρ
∣∣∣∇[ m

m−1ρ
m−1 + V

]∣∣∣2 dx.

Theorem ([Otto’01,Carrillo&Toscani’00,Dolbeault&DelPino’02])

If ∇2V ≥ λ, then L(ρ(t))→ 0 at exponential rate 2λ because

|∂L|2 ≥ 2λL. (∗)

Theorem ([Otto’01,Carrillo&McCann&Villani’03,AGS’05])

∇2V ≥ λ ⇒ L is λ-uniformly displacement convex ⇒ (∗)
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Gradient flow interpretation

∂tρ1 = ∆(ρm1 ) +∇ ·
(
ρ1∇[V1 + ε∂1H(ρ1, ρ2)]

)
∂tρ2 = ∆(ρm2 ) +∇ ·

(
ρ2∇[V2 + ε∂2H(ρ1, ρ2)]

)
is a gradient flow in the compound metric

d(ρ,ρ′)2 = W2(ρ1, ρ
′
1)2 + W2(ρ2, ρ

′
2)2

for the energy

Eε(ρ) =

ˆ
Rd

[ρm1 + ρm2
m− 1

+ V1ρ1 + V2ρ2 + εH(ρ1, ρ2)
]

dx− Eε.

Question

|∂Eε|2 ≥ 2λεEε ?

Partial (yet quite discouraging) answer

Our assumptions make Eε (flat) convex for each small ε > 0.
But: Eε is not displacement semi-convex, not for any ε > 0.
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Singular perturbation

Eε(ρ) =

ˆ
Rd

[ρm1 + ρm2
m− 1

+ V1ρ1 + V2ρ2 + εH(ρ1, ρ2)
]

dx− Eε.

Lemma

For ε = 0: λ-uniform geodesic convexity.
For any ε > 0: failure of µ-uniform displacement convexity, for all µ ∈ R.
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]

dx− Eε.

Lemma

For ε = 0: λ-uniform geodesic convexity.
For any ε > 0: failure of µ-uniform displacement convexity, for all µ ∈ R.

Reason for loss of convexity: consider d-geodesics

[τsρ](x) =
(
ρ1(x− se), ρ2(x)

)
.

Choosing locally oscillatory ρ1, ρ2, the integral

d2

d2s

∣∣∣∣
s=0

Eε(τsρ) ≈ −ε
ˆ
Rd

∂1∂2H(ρ) ∂eρ1 ∂eρ2 dx

can be made arbitrarily negative.



Singular perturbation

Eε(ρ) =

ˆ
Rd

[ρm1 + ρm2
m− 1

+ V1ρ1 + V2ρ2 + εH(ρ1, ρ2)
]

dx− Eε.

Lemma

For ε = 0: λ-uniform geodesic convexity.
For any ε > 0: failure of µ-uniform displacement convexity, for all µ ∈ R.

Put high frequency oscillations near x̂ with ∂1∂2H(ρ1(x̂), ρ2(x̂)) 6= 0.



Singular perturbation

Eε(ρ) =

ˆ
Rd

[ρm1 + ρm2
m− 1

+ V1ρ1 + V2ρ2 + εH(ρ1, ρ2)
]

dx− Eε.

Lemma

For ε = 0: λ-uniform geodesic convexity.
For any ε > 0: failure of µ-uniform displacement convexity, for all µ ∈ R.

Corollary

No standard route to
|∂Eε|2 ≥ 2λEε.



Singular perturbation

Eε(ρ) =

ˆ
Rd

[ρm1 + ρm2
m− 1

+ V1ρ1 + V2ρ2 + εH(ρ1, ρ2)
]

dx− Eε.

Lemma

For ε = 0: λ-uniform geodesic convexity.
For any ε > 0: failure of µ-uniform displacement convexity, for all µ ∈ R.

What about a change of metric?

For certain reaction diffusion systems,
long-time-asymptotics do follow via geodesic convexity,
see e.g. [Liero&Mielke’13, Mielke&Mittnenzweig’18].

Apparently, drift-(cross-)diffusion systems
cannot be written as uniformly contractive gradient flows,
see e.g. [Zinsl&M’15].



Realistic goal

|∂Eε|2 ≥ 2λ

(1−Kε)

Eε.

This seems no (trivial consequence of a) textbook inequality:

1 multiple components with nonlinear interaction,

2 ε-dependent, compactly supported minimizers,

3 on the whole Rd.

In a friendlier environment (bounded domain and m = 1),
such inequalities follow by “hands on” methods,
see e.g. [Alasio&Ranetbauer&Schmidtchen&Wolfram’20].
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Coming up next

The technical slides



Transient solutions

Theorem

The time-discrete approximation via JKO,

ρn := argmin
ρ

(
1

2τ
d(ρ,ρn−1)2 + Eε(ρ)

)
,

converge to a weak solution ρ∗ = (ρ∗1, ρ
∗
2).

Proof:

Limit ρ∗ exists by energy arguments. Really a weak solution?

Solution concept requires derivatives of nonlinearities,
weak convergence of ∇∂jH(ρ) needed.

For a priori estimates, combine
variations “along evolution” and “along heat flow”,

ˆ T

0

ˆ
Rd

ρj |∇ρm−1j |2 ≤ C and

ˆ T

0

ˆ
Rd

e−ρj |∇ρm−1j |2 ≤ C.
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Stationary solutions

Theorem

There is a unique minimizer ρ̄ = (ρ̄1, ρ̄2) of Eε.
The support of ρ̄j and the C2-norm of ∂jH(ρ̄) are controlled,
uniformly for small ε > 0.

Proof:

Existence by direct methods.

ρ̄j ’s support is {Vj ≤ V̄j}.
Euler-Lagrange equations are:

ρ̄m−11 + ε∂1H(ρ̄) = (V̄1 − V1)+

ρ̄m−12 + ε∂2H(ρ̄) = (V̄2 − V2)+

Regularity via IFT.



Instead of a linearization

Introduce the “convex expansion” of

Eε(ρ) =

ˆ
Rd

[ρm1 + ρm2
m− 1

+ V1ρ1 + V2ρ2 + εH(ρ1, ρ2)
]

dx

around the steady state ρ̄:

Lε(ρ) :=

ˆ
Rd

[ ρm1
m− 1

+ V ε1 ρ1 +
ρm2

m− 1
+ V ε2 ρ2

]
dx− Lε

with V εj := Vj + ε∂jH(ρ̄).

Corollary

∇2V εj ≥ 2λ(1−K1ε)1, and so |∂Lε|2 ≥ 2λ(1−K1ε)L
ε .
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Splitting

Split

Eε(ρ) =

ˆ
Rd

[ρm1 + ρm2
m− 1

+ V1ρ1 + V2ρ2 + εH(ρ)
]

dx− Eε

= Lε(ρ) + εAε(ρ)

with

Aε(ρ) =

ˆ
Rd

[
H(ρ)−H(ρ̄)− (ρ− ρ̄) ·DH(ρ̄)

]
dx.

Then:

|∂Eε|2 ≥ (1−K2ε)|∂Lε|2 −
ε

K2
|∂Aε|2

= (1− 2K2ε)|∂Lε|2 +
ε

K2

(
K2

2 |∂Lε|2 − |∂Aε|2
)

≥ (1− 2K2ε) · 2λ(1−K1ε)L
ε + 0

≥ 2λ(1−Kε)Eε.
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Coming up next

A similar story



A chemotaxis model

∂tρ = ∆ρ2 +∇ ·
(
ρ∇
[
V + εφ(c)

])
∂tc = ∆c− κc− εφ′(c) ρ.

is the gradient flow of

Eε(ρ, c) =

ˆ
Rd

[
2ρ2 + V ρ+

1

2
|∇c|2 +

κ

2
c2 + εφ(c)ρ

]
dx

w.r.t. the compound metric

d
(
(ρ, c), (ρ′, c′)

)2
= W2(ρ, ρ′)2 + ‖c− c′‖2L2 .

Theorem ([Zinsl&M’15])

Suppose ∇2V ≥ κ1. Then for each ε > 0 small enough:

Eε(ρ(t), c(t)) ≤ Eε
(
ρ(0), c(0)

)
exp

(
2(κ−Kε)t

)
.
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It’s over — for now!

The road ahead:

Understand gap between
failure of |∂Eε|2 ≥ 2λ(1−Kε)Eε and failure of (flat) convexity.

Repeat for non-local interaction
˜
K(x, y)ρ1(x)ρ2(y) dx dy

in place of
´

[V1ρ1 + V2ρ2] dx.

Pass from second to fourth order.

Thank you!


