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Optimal control (in the mean)

Consider the action functional

St [Z ] = E
∫ T

t
[
1
2
|DZs|2 + V (Zs)]ds + S(ZT )

defined for diffusion processes of the form

dZs =
√
νdWs + DZsds, Zt = x

where ν > 0, DZs ≡ u(s,Zs), u with some regularity, i.e the process is
Markov.

If we minimise S the value function satisfies the HJB equation

∂S
∂t
− 1

2
|∇S|2 +

ν

2
∆S + V = 0, S(T ) = S

and the critical drift u = −∇S satisfies a Burgers’ eq.

∂u
∂t

+ (u · ∇)u +
ν

2
∆u −∇V = 0, u(T ) = −∇S
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Optimal control (in the mean)

Well known relation with Optimal transport via Girsanov’s theorem:

since the law of Z (Q) is abs. continuous w.r.t the law of the Brownian
motion (with coeff.

√
ν) R with Radon-Nikodym derivative

exp
(√

ν

∫ T

t
u(Zs)dWs −

ν

2

∫ T

t
|u(Zs)|2ds

)
in the optimal control problem above we are looking at the relative
entropy

H(Q|R) = EQ
(

log
dQ
dR

)
' S

Here we consider a pathwise version of this problem.
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Statement of the problem

Define the random action functional

St ,x (Z ,u) =

∫ T

t
(L(u(s,Zs)) + V (Zs)) ds + S(ZT ),

dZs =
√
νdWs + u(s,Zs)ds, Zt = x and 0 ≤ t ≤ s ≤ T

(u random) and the value process

Ut (x) = ess infu∈USt ,x (Z ,u).

To guarantee that there is a strong solution to Z for each drift u, we
define U as the set of all processes (not necessarily adapted) which
are uniformly bounded and s.t
|u(t , x , ω)− u(t ′, x ′, ω′)| ≤ C(|t − t ′|+ |x − x ′|+ |ω − ω′|) for some
C > 0.
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Variational characterisation of the optimal drift

For every stochastic process h with time derivative in L2 and such that
h(t) = 0 (here L(u) = 1

2 |u|
2)

d
dε

∣∣∣∣
ε=0

S(Z +εh) =

∫ T

t
(us(Zs).ḣ(s))ds+

∫ T

t
∇V (Zs).h(s)dt+∇S(ZT ).h(T )

d
(

us(Zs).h(s)
)

= d(us(Zs)
)
.h(s) + us(Zs).ḣ(s)ds,

and since h(t) = 0 we have, for all h,

d
dε

∣∣∣∣
ε=0

S(Z + εh) =

∫ T

t
h(t). [−dus(Zs) +∇V (Zs)] ds

+ [∇S(ZT )− uT (ZT )] h(T )

So
d(us(Zs)) = ∇V (Zs)ds, uT (ZT ) = ∇S(ZT )
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Variational characterisation of the optimal drift

We cannot expect u to be adapted in general.

Example: L(u) = 1
2 |u|

2 and V ≡ 0.

Then u(s,Zs) = ∇S(ZT ) for t ≤ s ≤ T , and

Z (s) = x +

∫ s

t
∇S(ZT )dτ +

∫ s

t

√
νdW (τ).

So Z is not adapted to an increasing filtration up to time s. We shall
use non-adapted stochastic calculus.
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Non-adapted stochastic calculus

Consider:

Prob. space: Ω = {ω ∈ C([t ,T ];Rn), ω(t) = x , ω continuous}, P
Wiener measure (law of Brownian motion)

Cameron-Martin (tangent) space:
H = {h : [t ,T ]→ Rn : h(t) = 0,h is a.c. and

∫ T
t |

d
ds h(s)|2ds < +∞}.

If F is a random variable in Ω, define

DhF (ω) = lim
ε→0

1
ε

[F (ω + εh)− F (w)]

Since H is a Hilbert space, the derivative gives rise to a gradient
operator, 〈∇F ,h〉H = DhF .
Defining

DsF (ω) =
d
ds

∇F (ω),

we have DhF =
∫ T

t DsF d
ds h(s)ds.
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Non-adapted stochastic calculus

The Itô (-Skorohod) integral of non necessarily adapted processes,∫
u dW , is the Lp limit, when it exists, of sums

∑
k

Mk (u)(W (sk+1)−W (sk ))− 1
sk+1 − sk

∫ sk+1

sk

∫ sk+1

sk

Dsuτdsdτ

where

Mk (u) =
1

sk+1 − sk

∫ sk+1

sk

uτdτ,

The Stratonovich (-Skorohod) integral
∫

u ◦ dW is the limit of sums∑
k

Mk (u)(W (sk+1)−W (sk ))
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Non-adapted stochastic calculus

Relation between the two integrals:∫ T

t
us ◦ dWs =

∫ T

t
usdWs +

1
2

∫ T

t
(Du)sds,

(Du)s = D+
s us + D−s us, with

D+
s us = limτ→s+Dsuτ , D−s us = limτ→s−Dsuτ
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Non-adapted stochastic calculus

As in the adapted case, Stratonovich integration obeys the rules of
ordinary differential calculus.

Itô-Wentzell formula in the non-adapted case (Stratonovich version) by
Ocone and Pardoux.

If Zs = Zt +
∫ s

t Bτ ◦ dWτ +
∫ s

t Aτdτ and
Fs(x) = Ft (x) +

∫ s
t Hτ (x) ◦ dWτ +

∫ s
t Gτ (x)dτ ,

Fs(Zs) = Ft (Zt ) +
∑

k

∫ s

t
∇Fτ (Zτ ) · Bk

τ ◦ dW k
τ +

∫ s

t
∇Fτ (Zτ ) · Aτdτ

+

∫ s

t
Hτ (Zτ ) ◦ dWτ +

∫ s

t
Gτ (Zτ )dτ
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Main result

Theorem. The value process U is continuous in Rn × [t ,T ], Lipchitz in
space uniformly in t and α-Hölder in t uniformly in x for α < 1

2 . It is a
viscosity solution of the terminal value problem (stochastic HJB equation
with transport noise)


dv(s, x) = −

√
ν∇v(s, x) ◦ dW (s)

+
(

V (x) + ess infu (L(u) + u · ∇v)
)

ds,

v(T , x) = S(x)

or, in Itô(-Skorohod) form,
dv(s, x) = −

√
ν∇v(s, x).dW (s)

+
(

V (x) + ess infu

(
L(u) + u · ∇v

)
+
√
ν

2 Ds(∇v)(s, x)
)

ds,

v(T , x) = S(x).

Moreover the solution is unique.
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Main result

Viscosity solutions: (sub + super)

Let Φ be the solution of dΦ = −
√
ν∇Φ ◦ dWs, Φ(T , x) = S(x),

F (x , v) = V (x) + ess infu (L(u) + u · ∇v).

An upper (resp. lower) semi-continuous function v defined on
[0,T ]× Rn is a viscosity sub-solution (resp. super-solution) if it is
bounded from above (resp. from below) with terminal data satisfying
v(·,T ) ≤ S(x) (resp. v(·,T ) ≥ S(x)), and, whenever φ ∈ C2

b(Rn),
δ = δ(φ) > 0, g ∈ C1([0,T ]),Φ(s, x) ∈ C2

b(Rn), for s ∈ (s0 − δ, s0 + δ),
and the map (s, x) 7→ v(s, x)− Φ(s, x)− g(s) attains a local maximum
(resp. local minimum) at (s0, x0) ∈ Rn × (s0 − δ, s0 + δ), then

−g′(s0) ≤ F (∇Φ(s0, x0), x0) (resp.− g′(s0) ≥ F (∇Φ(s0, x0), x0)).
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Main result

It follows from Bellman’s optimality principle:

Ut (x) = ess infu

{∫ t+δ

t
(L(u) + V (Zs)) ds

}
+ Ut+δ(Zt+δ)

and uniqueness from a comparison principle:

If u and v are a viscosity solution sub-solution and a super-solution
respectively, then

sup
x∈BR(0)

(u(x , s)− v(x , s))+ = sup
x∈BR(0)

(u(x ,0)− v(x ,0))+

for all s ∈ [0,T ] and ∀R > 0.
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Main result

The case L(u) = 1
2 |u|

2. The equation for the drift,
du(s, x) = −

√
ν∇u(s, x) ◦ dW (s)

−[(u · ∇u)(s, x)−∇V (x)]ds,
u(T , x) = ∇S(x)

We can reverse time, defining ũ(s, x) = u(T − t , x) and


dũ(s, x) = −

√
ν∇ũ(s, x) ◦ dW (s)

+[(ũ · ∇ũ)(s, x)−∇V (x)]ds,
ũ(t , x) = ∇S(x)

(a forward problem).
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Main result

Symmetries of the action (again for L(u) = 1
2 |u|

2):

Consider a smooth (possibly random) vector field
Y :]t ,T [×Rn → [t ,T ]× Rn of the form Y (s, x) = (T (s),X (s, x)). Denote
by Φε = (ϕ0

ε , ϕε) the flow generated by Y :

d
dε

∣∣∣∣
ε=0

ϕ0
ε (t) = T (t),

d
dε

∣∣∣∣
ε=0

ϕε(t , x) = X (t , x).

A vector field Y as above is a Lagrangian infinitesimal variation symmetry of
the action functional S if its flow is conserved, i.e, ∀t1, t2 ∈ [t ,T ], t1 < t2 and
every ε > 0, we have, a.s.,∫ t2

t1

(1
2
|D(Zs)|2 + V (Zs)

)
ds =

∫ ϕ0
ε(t2)

ϕ0
ε(t1)

(1
2
|D(ϕε(Z(ϕ0

ε)
−1(s)))|2

+V (ϕε(Z(ϕ0
ε)

−1(s)))ds.
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Main result

On the critical drift we have

D
(
〈X ,u〉 − T

(
1
2
|u|2 − V

))
(s,Zs) =

ν

2
T (s)∆V (Zs).

N. Bhauryal, A.B.C. and C. Oliveira, Pathwise stochastic control
and a class of stochastic partial differential equations,
https://arxiv.org/pdf/2301.09214.pdf
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