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Optimal control (in the mean)

Consider the action functional

S[Z1=E / 1 1DZ,2 + V(Zs)]ds + 5(Zr)
defined for diffusion processes of the form
dZs = VvdWs + DZsds, Z; = x
where v > 0, DZs = u(s, Zs), u with some regularity, i.e the process is
Markov.

If we minimise S the value function satisfies the HJB equation

%f—ﬁvsf# ~“AS+V=0 8§(T)=S

and the critical drift u = —V S satisfies a Burgers’ eq.
ou

5+(u V)u+2Au vv=0, u(T)=-VS



Optimal control (in the mean)

Well known relation with Optimal transport via Girsanov’s theorem:

since the law of Z (Q) is abs. continuous w.r.t the law of the Brownian
motion (with coeff. \/v) R with Radon-Nikodym derivative

T o ,
e (Vi [ uZaWe -~ [ u(zo)fs)
t t
in the optimal control problem above we are looking at the relative

entropy

H(QIR) = EQ(Iog ‘;’g) ~ S

Here we consider a pathwise version of this problem.
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Statement of the problem

Define the random action functional

Sex(Z,u) = /t " (L. 20)) + V(Z2)) ds + S(Z7),
dZs = VvdWs + u(s,Zs)ds, Zi=xand0<t<s<T
(u random) and the value process
Ui(x) = ess infuey St x(Z, u).

To guarantee that there is a strong solution to Z for each drift u, we
define U as the set of all processes (not necessarily adapted) which
are uniformly bounded and s.t

lu(t, x,w) —u(t',x", )| < C(|t — |+ |x — X'| + |w — w'|) for some
C > 0.



Variational characterisation of the optimal drift

For every stochastic process h with time derivative in L? and such that
h(t) = 0 (here L(u) = }|u[?)

d

de

T . T
S(Z+eh) = / (us(Zs).h(s))ds+ / VV(Zs).h(8)dt+V S(Zy).h(T
e=0 t t

o (us(Ze).(s)) = o(us(Z2)) -(s) + s(Zs).h(s) s,
and since h(t) = 0 we have, for all h,

d

T sz +eh= /t " Pt [ dus(Ze) + T V(Ze)] ds

e=0
+[VS(Zr) = ur(Zr)] h(T)

So

d(Us(Zs)) = VV(Z5)ds, ur(Zr) = VS(Zr)



Variational characterisation of the optimal drift

We cannot expect u to be adapted in general.

Example: L(u) = 3|ul?> and V = 0.
Then u(s,Zs) = VS(Zr)fort <s<T,and

Z(s)=x+ /ts VS(Zr)dr + /ts VvdW(T).

So Z is not adapted to an increasing filtration up to time s. We shall
use non-adapted stochastic calculus.



Non-adapted stochastic calculus

Consider:

Prob. space: Q = {w € C([t, T|; R"),w(t) = x,w continuous}, P
Wiener measure (law of Brownian motion)

Cameron-Martin (tangent) space:
H={h:[t,T] = R": h(t)=0,hisa.c. and [ |ZLh(s)[2ds < +ooc}.

If Fis a random variable in €2, define

DpF(w) = EIi_rpog[F((.u +eh) — F(w)]

Since H is a Hilbert space, the derivative gives rise to a gradient
operator, (VF, h)y = DyF.
Defining

d

DsF(w) = £VF(w),

we have DpF = [T DsF L h(s)ds.
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Non-adapted stochastic calculus

The It6 (-Skorohod) integral of non necessarily adapted processes,
J u dW, is the LP limit, when it exists, of sums

Sk41 Sk41
ZM}( Sk+1) - W(SK)) M/ / DSUTdeT

where

M 1 Sk41 d
k() = 3k+1—3k/ u-ar,

The Stratonovich (-Skorohod) integral [ u o dW is the limit of sums

S Mi(U)(W(sk41) — W(si))
k
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Non-adapted stochastic calculus

Relation between the two integrals:
T T 1 T
/ Us o dWs - / Udes + 2/ (]D)U)sds,
t t t

(Du)s = DJ us + Dy us, with

D;’_US — IimT*)S-I- Dsu‘;-, DS_US — Iing)S— DsuT



Non-adapted stochastic calculus

As in the adapted case, Stratonovich integration obeys the rules of
ordinary differential calculus.

It6-Wentzell formula in the non-adapted case (Stratonovich version) by
Ocone and Pardoux.

f Zs=Z+ [7 B: odW +ffA dr and
Fs(X) = Fy(x) + [} H-(x) 0 dW; + [} G, (x)dT,
S
(Zs) = Ft(Zt + Z/ VF Bk o de / VFT(ZT) . ATdT

S
+/ HT(ZT)odWT+/ G.(Z,)dr
t t



Main result

Theorem. The value process U is continuous in R” x [¢t, T], Lipchitz in
space uniformly in ¢ and a-Ho6lder in ¢ uniformly in x for o < % Itisa
viscosity solution of the terminal value problem (stochastic HIB equation
with transport noise)

dv(s,x) = —\/vVv(s,x) o dW(s)
+<V(x) +ess infy (L(U) + u- V) )ds,
v(T,x) = S(x)

or, in It6(-Skorohod) form,

dv(s,x) = —/vVv(s,x).dW(s)
+(V(x) +essinfy (L(u) + u- Vv) + 5 Dg(Vv)(s,x)) ds,
v(T,x) = S(x).

Moreover the solution is unique.



Main result

Viscosity solutions: (sub + super)

Let ¢ be the solution of d® = —\/vVd o dWs, (T, x) = S(x),
F(x,v) = V(x)+essinf, (L(u) +u-Vv).

An upper (resp. lower) semi-continuous function v defined on

[0, T] x R™is a viscosity sub-solution (resp. super-solution) if it is
bounded from above (resp. from below) with terminal data satisfying
v(-, T) < S(x) (resp. v(-, T) > S(x)), and, whenever ¢ € CZ(R"),
§=06(¢) >0, g e C'([0, T]), (s, x) € CZ(R"), for s € (Sg — 3, Sp + 9),
and the map (s, x) — v(s, x) — ®(s, x) — g(s) attains a local maximum
(resp. local minimum) at (sp, Xp) € R” x (sp — 6, Sp + 0), then

—9'(s0) < F(V®(s0, %), %) (resp. — g'(so) > F(V(Sp, %), X0))-



Main result

It follows from Bellman’s optimality principle:

)
Ur(x) = ess inf, { /t L)+ v(ze) ds} b Unis(Zies)

and uniqueness from a comparison principle:

If uand v are a viscosity solution sub-solution and a super-solution
respectively, then

sup (u(x,8) — v(x,8))+ = sup (u(x,0)— v(x,0))+
xeBg(0) x€Bg(0)

forall s € [0, T] and VR > 0.



Main result

The case L(u) = %|u|2. The equation for the drift,

du(s, x) = —/vVu(s, x) o dW(s)
—[(u-Vu)(s,x) — VV(x)]ds,
u(T,x)=VS(x)

We can reverse time, defining 4(s, x) = u(T — t, x) and
du(s, x) = —\/vVu(s, x) o dW(s)

+[(T-VT)(s, x) — VV(x)]ds,
u(t, x) = VS(x)

(a forward problem).



Main result

Symmetries of the action (again for L(u) = }|u[?):

Consider a smooth (possibly random) vector field
Y :Jt, T[xR™" — [t, T] x R" of the form Y(s, x) = (T(s), X(S, x)). Denote
by &, = (¢?, ¢.) the flow generated by Y:

d 91 ot x) = X(t, ).

0
H=T(), —
G| AO=T0O. I
A vector field Y as above is a Lagrangian infinitesimal variation symmetry of
the action functional S if its flow is conserved, i.e, Vi, & € [t, T], t; < b and
every € > 0, we have, a.s.,

[ (aio@or + viz)es = | (3102t

t ()
+V(@=(Zp0)-1(s)))dsS.



Main result

On the critical drift we have

D ((X, u-T <;|u|2 - v)) (s,Z5) = gT(s)A V(Zs).

[@ N.Bhauryal, A.B.C. and C. Oliveira, Pathwise stochastic control
and a class of stochastic partial differential equations,
https://arxiv.org/pdf/2301.09214.pdf
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