Quantum mechanics via Schrödinger's problem, Mass transportation and back

Optimal Transport: applications to Physics, Les Houches-16/3/2023

Jean-Claude Zambrini
Group of Mathematical Physics (GFMUL), Fac. Sciences Univ. Lisboa
.
Joint work with Q. Huang.

4 D > 4 P > 4 E > 4 E > E 990

1. Brief summary of (Von Neumann's) QM in general ∞ dim. separable Hilbert space, $<\cdot|\cdot>_2$.

In complex Hilbert space $\mathcal{H}(M)$, a ray $=\{\alpha\Psi,\Psi\in\mathcal{H},\|\Psi\|=1,\alpha\in\mathbb{C},|\alpha|=1\}=$ quantum (pure) state of system.

 $\underline{\mathsf{Ex.}}\ \Psi = \mathsf{Schr\"{o}dinger's}\ \text{``wave function''}.$

To each classical a(q, p) observable \longleftrightarrow unique s.a. densely defined self-adjoint operator A in \mathcal{H} .

1. a) Quantum static

For Ψ state at t_0 , A with spectral family $E^A(\lambda)$ of orthogonal projections, the prob. that a measurement of A is $\leq \lambda$ is

$$<\Psi|E^{A}(\lambda)\Psi>=\|E^{A}(\lambda)\Psi\|^{2}\Rightarrow \text{ if }\Delta=]\lambda_{1},\lambda_{2}], E^{A}(\Delta)=E^{A}(\lambda_{2})-E^{A}(\lambda_{1})$$

$$\Pr_{\Psi} \{ \text{ value of } A \in \Delta \} = \|E^A(\lambda)\Psi\|^2 \neq 0 \text{ if } \Delta \subset \sigma_A$$

Expectation of A in
$$\Psi$$
: $<\Psi|A\Psi>=\int\lambda\underbrace{<\Psi|dE^A(\lambda)\Psi>}$ on $\mathcal{D}_A\subset\mathcal{H}$

"Prob." measure for A

$$\begin{split} & \underbrace{\text{Position}}_{} Q: \mathcal{D}_Q \to \mathcal{H} = L^2(\mathbb{R}) \\ & \qquad \qquad \Psi(q) \to q \Psi(q) \\ & E^Q(\lambda) = \mathbf{1}_{]-\infty,\lambda]}(q) \qquad \text{heuristic } E^Q(\lambda) \Psi = \int_{-\infty}^{\lambda} \Psi(x) \delta(q-x) dx \\ & \|E^Q(\Delta)\Psi\|^2 = \int_{\Delta} |\Psi(q)|^2 dq, \text{ Spectrum } \sigma_Q = \mathbb{R}, \\ & < Q >_{\Psi} = \int_{\mathbb{R}} q |\Psi(q)|^2 dq \end{split}$$

Hamiltonian
$$H = \frac{1}{2}P^2 + V(Q) = -\frac{\hbar^2}{2}\Delta + V = H_0 + V.$$

 $\frac{i}{\hbar}[H,Q] = -i\hbar\nabla = P$, $\frac{d}{dt} < Q >_{\Psi} = < P >_{\Psi}$
also $\frac{d}{dt} < P >_{\Psi} = < -\nabla V >_{\Psi}$, $\underline{\text{not}} -\nabla V(< Q >_{\Psi})$!

1 b) Quantum Dynamics

As in regular probability theory

"Pr"
$$_{\Psi}$$
{value of $A \in \Delta$ } =< $\chi_{\Delta}(A) >_{\Psi}$

For given observable A, $A(t) = e^{it\frac{H}{\hbar}}Ae^{-it\frac{H}{\hbar}}$

$$\begin{split} \frac{d}{dt}A(t) &= \frac{i}{\hbar}[H,A(t)], \qquad \Psi(t) = e^{-it\frac{H}{\hbar}}\Psi_0, \quad \begin{cases} i\hbar\frac{\partial\Psi}{\partial t} &= H\Psi\\ \Psi(0) &= \Psi_0 \end{cases} \\ &< A>_{\Psi(t)} &= < A(t)>_{\Psi_0} \end{split}$$

Schrödinger Heisenberg

Conceptual difficulties

- a) Meaning of $< |>_{\Psi}$?
- # mathematical probabilities in Von Neumann axioms (He knew it. Did not like it.)
- Where are (Feynman's) diffusions expected for H, with $(\Omega, \mathcal{P}_t, P_r)$?
- For Q, "diffusion" Z_t s.t $\rho_t(dq) = \bar{\Psi}_t(q)\Psi_t(q)dq$? Proved inexistent : R. H. Cameron (1960).
- $\underline{\text{NB}}: < P>_{\Psi_t} \text{ suggests } \left(-i\frac{\nabla \Psi_t}{\Psi_t}(q)\right) \text{ as complex valued vector field (drift) of } Z_t.$
- b) Quantization \neq algorithm Axiom 2 ($a \rightarrow A$) too naïve.
- Operator associated with $\forall \ a(q,p)$? Since Heisenberg's $[Q,P]=i\hbar$ ("Incompatible measurements" !) \Rightarrow Different choices of A(Q;P).

c) $\lim_{h\downarrow 0}$ Q.M. not trivial.

Ex. $\lim_{\hbar \downarrow 0} P = 0$? Only $\lim_{\hbar \downarrow 0} \langle P \rangle_{\Psi_{\star}}$ is OK.

d) \nexists quantum trajectories in space-time. For $h_0(q, p) = \frac{1}{2}p^2$, $H_0 = -\frac{\hbar^2}{2}\Delta$, Q(t) = Q + tP, P(t) = P but $[Q(t), Q(0)] = -i\hbar t$, $\forall t > 0$

 \rightarrow \sharp space-time history ! \rightarrow Surrealistic interpretations. \sharp reality !

For same reason, ∄ joint probability: natural candidate (Cf. Feynman) $\in \mathbb{C}$.

2) 1931-32 Schrödinger's problem of classical statistical physics

Motivation: Analogy with QM without ideological bias.

Brownian motion = 25 years old in 1931. Tool of <u>classical statistical</u> physics, associated with $-\frac{\partial \eta^*}{\partial t} = H_0 \eta^*$ (Cauchy) $\eta_\chi^*(q,0) = \chi(q) > 0$ ("heat"!)

<u>NB</u>: $\forall V$ bounded below , sol. $\Psi_{\chi}(q,\tau)=(e^{-i\tau H}\chi)(q)$ after $\tau\to i\tau=t$ is $\eta_{\chi}^*(q,t)$ pointwise solution of heat eq. ("Euclidean" Schrödinger's eq.)

<u>Mystery</u>: All probabilistic results of quantum physics minimally consistent with regular QM are Euclidean. (Nelson's theory was not: Brownian \neq sol. for V=0)

Key Schrödinger's observation:

$$\bar{\Psi}_t(q)\Psi_t(q)dq \longrightarrow i\frac{\partial \Psi}{\partial t} = H_0\Psi$$

$$-i\frac{\partial \bar{\Psi}}{\partial t} = H_0\bar{\Psi}$$

Quantum time-reversibility.

So: Formulate a <u>parabolic</u> problem whose solution is well def. probab. density: $\rho_t(dq) = \eta_t^*(q)\eta_t(q)dq$ for $0 < \eta_t$ s.t. $\frac{\partial \eta}{\partial t} = H_0\eta, t \in [s,u]$, $\eta_t^* > 0$, given $\eta(q,u) > 0$.

Result (with Q. Huang): Stochastic geometric Lagrangian/Hamiltonian dynamics of well defined diffusion X_t , $s \le t \le u$, (called "Bernstein" for historical reasons), solving Schrödinger's problem.

Key ingredient

1933 Axiomatic foundations of Probab. Theory by Kolmogorov, analyst (with Chapman).

Dynamics = Cauchy problems, Ex. $\rho_s(dq)$, incompatible with Schrödinger's problem.

Probabilistic data : An Hamiltonian H, a joint density M(dx, dz) at $\partial[s, u]$, containing all possible correlations between processes X_s, X_u with density $\{\rho_s(dx), \rho_u(dz)\}$ = Data of Schrödinger's probab.

Idea of probabilistic proof of existence

Origin: Feyman's PhD "transition amplitude"

$$\int \int \Psi_s(x) \underbrace{K(x,u-s,z)}_{(e^{-\frac{i}{\hbar}(u-s)H})} \bar{\varphi}_u(z) dxdz = <\varphi_s | \Psi_s>_2 \in \mathbb{C} !$$

Euclidean version :
$$M(dx, dz) = \int \int \eta_s^*(x) \underbrace{h(x, u - s, z)}_{\eta_u(z)} \eta_u(z) dx dz$$

$$(e^{-\frac{1}{\hbar}(u - s)H}) > 0$$

Marginals of M $\begin{cases} \eta_s^*(x) \int h(x, u - s, z) \eta_u(z) dz = \rho_s(dx) \\ \eta_u(z) \int \eta_s^*(x) h(x, u - s, z) dx = \rho_u(dz) \end{cases}$ given Schrödinger's data.

Existence/uniqueness of η_s^* , $\eta_u > 0$ (A. Beurling, Ann. Math. 1960) $\Rightarrow \eta_t^*(q), \eta_t(q), \ \forall s \leq t \leq u$, i.e. $\rho_t(q)dq$.

Euclidean counterpart of

$$< P>_{\Psi_t} : < P>_{\eta_t} = \int \{\hbar
abla \log \eta_t(q)\} \eta_t^*(q) \eta_t(q) dq = \hbar \int \eta_t^*(q)
abla \eta_t(q) dq$$

<u>NB</u>: <u>or</u>, after integration by parts, $-\int \eta_t(q) \nabla \eta_t^*(q) dq$

 $(\hbar \nabla \log \eta_t(q))$ and $(-\hbar \nabla \log \eta_t^*(q))$ represent 2 drifts of <u>same</u> X_t , one w.r.t. increasing \mathcal{P}_t , starting from $\rho_s(dq)$, the other decreasing from $\rho_u(dq)$.

Time reversal = Schrödinger's Euclidean version of Complex conjugation in L^2 , associated to product form of $\rho_t(dq)$.

 \exists many joint probabilities m(dx, dz) with <u>same</u> given marginals $\rho_s(dx), \rho_u(dz)$. Above M(dx, dz) is only <u>Markovian</u> one, chosen a priori by Schrödinger. Non-Markovian Bernstein processes correspond to <u>mixture</u> of states (Quantum <u>Statistical</u> Physics), not considered here. Only in this context, a notion of <u>Entropy</u> should be justified (Cf. Von Neumann).

Connection with Mass transportation \longrightarrow <u>Joint probability</u> $M(dx, dz) \longrightarrow$ Cf. Christian Léonard.

3) Stochastic geometric dynamics according to L. Schwartz

Second order (SO) tangent vectors $\in \tau_q^s M \supset TM$

$$\mathbf{A} = \mathbf{A}^i \left. \frac{\partial}{\partial x^i} \right|_q + \mathbf{A}^{jk} \left. \frac{\partial^2}{\partial x^i \partial x^k} \right|_{q \in M}$$

For $dX(t) = B(X(t), t)dt + \sigma_I^i(X(t))dW^I(t)$

$$(DX)^{j} = \lim_{\Delta t \downarrow 0} E\left[\frac{X^{j}(t + \Delta t) - X^{j}(t)}{\Delta t}|\mathcal{P}_{t}\right]$$

Flat case,
$$\hbar > 0$$

$$= \left(\frac{\partial}{\partial t} + B^{j} \nabla_{i} + \frac{\hbar}{2} \Delta\right) X^{j} = B^{j}(X(t), t)$$
$$(QX)^{jk} = \lim_{\Delta t \downarrow 0} E\left[\frac{(X^{j}(t + \Delta t) - X^{j}(t))(X^{k}(t + \Delta t) - X^{k}(t))}{\Delta t}|\mathcal{P}_{t}\right]$$

Def. : (DX, QX) = Process in T^SM . (SO tangent bundle)

SO covectors
$$\in (\tau^*)^s M$$
:

$$\alpha = \alpha_i \ \mathrm{d}^2 x^i \big|_q + \tfrac{\alpha_{jk}}{2} \ \mathrm{d} x^j \mathrm{d} x^k \big|_q$$

Duality
$$< \alpha(q), A> = \alpha_i A^j + \alpha_{ik} A^{jk}$$

Fundamental SO forms: d^2f and $df \cdot dg$ s.t.

$$<$$
 $d^2f, A>=$ Af , $<$ $df\cdot dg, A>=$ $A(f\cdot g)-f$ $Ag-g$ $Af\equiv \Gamma_A(f,g)$ (Carré du champ)

Restriction to <u>classical</u> cotangent bundle (Phase space) T^*M :

$$d^2f\big|_{T^*M}=df$$
, $df\cdot dg|_{T^*M}=\frac{1}{2}\Big(d(fg)-fdg-gdf\Big)=0$ (Leibniz & Schwartz)

SO Poincaré form on $(\tau^*)^s M$

$$\omega_{SO} = \rho_i d^2 x^i + \frac{1}{2} O_{jk} dx^j dx^k$$

$$\underline{\mathsf{Def.}}\ \Omega \equiv -d^2\omega_{SO}$$

with associated "Hamiltonian" H, $\Omega(A_H,B)=d^2H(B)$, \forall SO vector field B

⇒ General stochastic Hamiltonian equations :

If \exists a (Lévi-Civita) connection ∇ , \exists class of (random) Hamiltonian functions H_\hbar built from classical (Euclidean) $H_0(x, p)$

$$H_{\hbar}(x,p,o)=H_{0}(x,p)+rac{\hbar}{2}g^{ij}(o_{ij}-\Gamma^{k}_{ij}(x)p_{k})$$
 s.t.

$$\begin{cases} D_{\nabla}X = \nabla_{\rho}H_{0} & \text{for } (D_{\nabla}X)^{i} = (DX)^{i} + \frac{1}{2}\Gamma_{jk}^{i}(QX)^{jk} \\ & \text{true vector !} \\ \frac{\bar{D}}{dt}\rho = -d_{x}H_{0} & \frac{\bar{D}}{dt} = \frac{\partial}{\partial t} + \nabla_{D_{\nabla}X} + \frac{1}{2}\Delta_{LD} \end{cases}$$

On
$$\underline{M} = \mathbb{R}^n$$
, for $H_0(x, p) = \frac{1}{2}|p|^2 - V(x)$,

$$H_{\hbar} = H_0 + \frac{\hbar}{2} \text{Tr} O$$
 , $O = \nabla \cdot p$ Probabilistic quantization.

Relation with Schrödinger's problem

Pick
$$\eta > 0$$
 solving $\hbar \frac{\partial \eta}{\partial t} = -\frac{\hbar^2}{2}\Delta \eta + V\eta$, $\eta_u > 0$ given, $s \le t \le u$. Then $(DX)^i(t) = \frac{\partial}{\partial x^i}\log \eta(X(t),t)$, $(QX)^{jk}(t) = \hbar \delta^{jk}$

(Euclidean) Lagrangian for
$$H_0$$
, $L_0(x, \dot{x}) = \frac{1}{2}|\dot{x}|^2 + V(x)$

Stochastic E-L:

$$\frac{\bar{D}}{dt}\Big(d_{\dot{X}}L_0(X(t),D_{\nabla}X(t))\Big)-d_XL_0(X(t),D_{\nabla}X(t))=0$$

A * operation provides \mathcal{F}_t counterparts.

- E. Schrödinger, Sur la théorie relativiste de l'électron et l'interpretation de la mécanique quantique, Ann. de l'Inst. H. Poincaré, Vol.2, 269–310 (1932), last paragr.
- J.-C. Zambrini, Variational processes and stochastic versions of mechanics, J. of Math. Phys. 27(9), 2307–30 (1986)
- C. Léonard, A survey of Schrödinger problem and some of its connections with optimal transport. Special issue on OT and applications, Discrete Cont. Dyn. Systems 34(4), 1533–74 (2014)
- T. Mikami, Stochastic Optimal transportation: Stochastic Control with fixed marginals, Springer Nature (2021)
- A.B. Cruzeiro, J.-C. Zambrini, Malliavin calculus and Euclidean quantum mechanics I. Functional calculus, J. Funct. Anal. 96(1), 62–95 (1991)

Q. Huang, J.-C. Zambrini, From second-order differential geometry to stochastic geometric mechanics, arXiv:2201.03706 (2022), to appear in Journal of Nonlinear Science

Q. Huang, J.-C. Zambrini, Stochastic geometric mechanics in nonequilibrium thermodynamics: Schrödinger meets Onsager, J. of Physics A: Mathematical and Theoretical 56 134003 (2023)