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1. Brief summary of (Von Neumann’s) QM in general co dim.
separable Hilbert space, < |- >».

In complex Hilbert space #(M), a ray
={aV,V e H,|V|] =1,a € C,|a| = 1} = quantum (pure) state of
system.

Ex. ¥ = Schrédinger’s “wave function".

To each classical a(q, p) observable «<— unique s.a. densely defined
self-adjoint operator A in H.



1. a) Quantum static

For V state at t, A with spectral family £4()) of orthogonal
projections, the prob. that a measurement of Ais < X is

< WIEAMW >= [EAVIR = if A =]\, dol, EAB) = EAD2)—EA(\)

Pry{valueof Ac A} = |[EANV|2#0if A Cop

Expectation of Ain W : < WAV >= [\ < W|dEA(\)V > on Dy C H

“Prob." measure for A



Position Q : Dg — H = L?(R)
v(q) — qV(q)
EQ(\) =11_w(q)  heuristic Q)W = [*_W(x)d(q — x)dx
|EQ(A)|2 = [, |W(q)[2dg, Spectrum oq =R,
< Q>y= [;qV¥(g)|?dq
Momentum P : Dp — L2(R) , Fourier transform of W(q) —
V(q) = —ihv(q)
<P>y= [y ( — iV log W(q)) W(g))2dg ,op = R



Hamiltonian H = 1P2 + V(Q) = ~ A + V = Hy + V.
HH,Q=—-ilV=P , S <Q>y=<P>y

also & < P>y=<-VV >y,not —VV(<Q>y)!

1 b) Quantum Dynamics

As in regular probability theory
“Pry{value of A€ A} =< xa(A) >y
For given observable A , A(t) = et Ae—ith |

oA

GA(t) = L[H, A1), V() = e tiwg, { V(0) = Vg

<A >y = <A(L) >y,
Schrédinger Heisenberg



Conceptual difficulties

a) Meaning of < | >y ?

# mathematical probabilities in Von Neumann axioms (He knew it. Did
not like it.)

Where are (Feynman'’s) diffusions expected for H, with (Q, P¢, P;) ?

For Q, “diffusion” Z; s.t p;(dq) = V{(q)V¢(q)dg ? Proved inexistent :
R. H. Cameron (1960).

NB : < P >y, suggests ( - iVT“[’f(q)) as complex valued vector field

(drift) of Z;.

b) Quantization # algorithm Axiom 2 (a — A) too naive.

Operator associated with ¥ a(q, p) ? Since Heisenberg’s [Q, P] = ik
(“Incompatible measurements" !) = Different choices of A(Q; P).



c) limity 0 Q.M. not trivial.
Ex. |imith¢0P =07 OnIy |imh¢0 <P >y, is OK.

d) 7 quantum trajectories in space-time. For hy(q, p) = 5p?

Ho = =24, Q(t) = Q+ tP, P(t) = P but [Q(t), Q(0)] = —iht, Vt>0
— # space-time history | — Surrealistic interpretations. 7 reality !

For same reason, 7 joint probability : natural candidate (Cf. Feynman)
e C.




2) 1931-32 Schrddinger’s problem of classical statistical physics

Motivation : Analogy with QM without ideological bias.

Brownian motion = 25 years old in 1931. Tool of classical statistical
physics, associated with —aa—t = Hon* (Cauchy) 7;(q,0) = x(q) >0
(“heat" !

NB : VV bounded below , sol. ¥,(q,7) = (e~"™"x)(q) after r — it =t
is 7% (q, t) pointwise solution of heat eq. (“Euclidean” Schrédinger’s
eq.)



Mystery : All probabilistic results of quantum physics minimally

consistent with regular QM are Euclidean. (Nelson’s theory was not :
Brownian # sol. for V. =0)

Key Schrédinger’s observation :

Vi(q)Vi(q)dg — i—

Quantum time-reversibility.
So: Formulate a parabolic problem whose solution is well def. probab.

density : pt(dq) = n;(q)m(q)dg for 0 < nes.t. §2 = Hon, t € [s, 4],
n; >0, given n(q,u) > 0.

Result (with Q. Huang) : Stochastic geometric Lagrangian/Hamiltonian
dynamics of well defined diffusion X;, s < t < u, (called “Bernstein" for
historical reasons), solving Schrddinger’s problem.



Key ingredient

1933 Axiomatic foundations of Probab. Theory by Kolmogorov, analyst
(with Chapman).

Dynamics = Cauchy problems, Ex. ps(dq) , incompatible with
Schrédinger’s problem.

Probabilistic data : An Hamiltonian H , a joint density M(dx, dz) at
d[s, u], containing all possible correlations between processes X, Xy
with density {ps(dx), pu(dz)} = Data of Schrédinger’s probab.

Idea of probabilistic proof of existence

Origin : Feyman’s PhD “transition amplitude”
[ [Vs(x)K(x,u—s,2) pu(z)dxdz =< ps|Vs >, € C!
%,_/

(ef%(ufs)H) = Jor e SLlw().u=slp,,



Euclidean version : M(dx, dz) = [ [ n%(x) h(x,u — s, z) nu(z)dxdz
%,_/

(e U=9H) > 0

(x) [ h(x, u s, Z)nu( )dz = ps(dx)

iven
z) [ ms(x ~s,2)dx = pu(dz) O

Marginals of M {

Schrédinger’s data

Existence/uniqueness of g, n, > 0 (A. Beurling, Ann. Math. 1960)
= n7(9),m(q), Vs<t<uie p(q)dq.

Euclidean counterpart of
< P>y, 1 < P>y= [{hViogn:(q)}ni (q)n:(a)dg = h [ n{ (q)Vni(q)dq

NB : or, after integration by parts, — [ 7:(q)Vn;(q)dq



(hV logn:(q)) and (—AV log n; (q)) represent 2 drifts of same X; , one
w.r.t. increasing P, starting from ps(dq), the other decreasing from
pu(dq).

Time reversal = Schrddinger’s Euclidean version of Complex
conjugation in L? , associated to product form of p(dq).

3 many joint probabilities m(dx, dz) with same given marginals

ps(dx), pu(dz). Above M(dx, dz) is only Markovian one, chosen a priori
by Schrédinger. Non-Markovian Bernstein processes correspond to
mixture of states (Quantum Statistical Physics), not considered here.
Only in this context, a notion of Entropy should be justified (Cf. Von
Neumann).

Connection with Mass transportation — Joint probability
M(dx, dz) — Cf. Christian Léonard.




3) Stochastic geometric dynamics according to L. Schwartz

Second order (SO) tangent vectors € 75M > TM

ax’ OxIoxk

A=A D | AR

geM
For dX(t) = B(X(t), t)dt + ol(X(t))dW!(t)

L XI(t+ At) — XI(1)
/ —
(DX) ktnjo El At |Pi]
Flat case, h > 0 = (% + BV, + gA)Xf = B/I(X(1), 1)

(XI(t + At) — XI(1)(XK(t + At) — XK(1))
At

Kk _—
(QX)* = Jim E[ Py

Def. : (DX, QX) = Process in TSM. (SO tangent bundle)



SO covectors € (7%)°M :
o= o dzxi‘q + % deka‘q

Duality < a(q), A >= a;A + aAK

Fundamental SO forms: d?f and df - dg s.t.

<d’fLA>=Af |, <df-dg,A>=A(f-g)—fAg— g Af =T x(f,g)
(Carré du champ)

Restriction to classical cotangent bundle (Phase space) T*M :

@f|.,, = df , df-dg|y.y = %(d(fg) — fdg — gdf) — 0 (Leibniz

& Schwartz)




SO Poincaré form on (7%)*M
wso = Pid?x’ + } Ojax/dx¥

Def. Q = —d?wso

with associated “Hamiltonian" H, Q(Ay, B) = d?H(B), v SO vector
field B

= General stochastic Hamiltonian equations :

If 3 a (Lévi-Civita) connection V , 3 class of (random) Hamiltonian
functions Hj, built from classical (Euclidean) Hy(x, p)

Hi(x,p, 0) = Ho(x,p) + 59"(0j — TK(X)px) st



DyX = VpHo for (DyX)' = (DX)' + 3T (QX)*
) true vector !
%,0 = —dxHo gt t + Vpex + ALD
On M =R", for Hy(x,p) = 3lp|* — V(x) ,
Hy=Ho+4TrO , O=V-p  Probabilistic quantization.

Relation with Schrédinger’s problem

377*

Pickn > 0 solvmg h h—zAnJr Vn , nu>0given, s <t < u. Then

(DX)/(t) = g logn(X(t), 1) . (QXYX(t) = h o*
(Euclidean) Lagrangian for Hy , Lo(x,x) = %])'(|2 + V(x)
Stochastic E-L :

2 (dhLo(X(1), Dy X(1))) — dLo(X(1), DyX(1)) = 0

A x operation provides F; counterparts.
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