A relaxed Beckmann's problem for SPD valued measures and application to Full Waveform Inversion

17/03/2023

Gabriele Todeschi

Labex Bézout, Université Gustave Eiffel

~			
(-a	hrie	elor	lesch

1/14

A B A B A B A

Objective: reconstruct the velocity model $v : D \subset \mathbb{R}^d \to \mathbb{R}_+$ of the acoustic wave equation

$$\frac{1}{v}\partial_t^2 p - \Delta p = s, \quad \text{in } [0, T] \times D$$

(*s* source term)

э

Objective: reconstruct the velocity model $v : D \subset \mathbb{R}^d \to \mathbb{R}_+$ of the acoustic wave equation

$$\frac{1}{v}\partial_t^2 p - \Delta p = s, \quad \text{in } [0, T] \times D$$

(*s* source term)

Variational problem:

$$v \in \operatorname*{arginf}_{v} \mathcal{D}(d_{pred}[v], d_{obs}),$$

where D is a misfit function between true measurements d_{obs} and predicted data $d_{pred}[v]$.

э

Objective: reconstruct the velocity model $v : D \subset \mathbb{R}^d \to \mathbb{R}_+$ of the acoustic wave equation

$$\frac{1}{v}\partial_t^2 p - \Delta p = s, \quad \text{in } [0, T] \times D$$

(*s* source term)

Variational problem:

$$v \in \operatorname*{arginf}_{v} \mathcal{D}(d_{pred}[v], d_{obs}),$$

where D is a misfit function between true measurements d_{obs} and predicted data $d_{pred}[v]$.

Measurements: pressure $p(\cdot, x_r)$ or particles velocities $u(\cdot, x_r) = (u_i(\cdot, x_r))_{i=1}^n$ for $x_r \in D$.

D model space, $\Omega = \{x_r, .., x_{N_r}\} \times [0, T]$ data space

э

イロト 不得 トイヨト イヨト

Objective: reconstruct the velocity model $v : D \subset \mathbb{R}^d \to \mathbb{R}_+$ of the acoustic wave equation

$$\frac{1}{v}\partial_t^2 p - \Delta p = s, \quad \text{in } [0, T] \times D$$

(*s* source term)

Variational problem:

$$v \in \operatorname*{arginf}_{v} \mathcal{D}(d_{pred}[v], d_{obs}),$$

where D is a misfit function between true measurements d_{obs} and predicted data $d_{pred}[v]$.

Measurements: pressure $p(\cdot, x_r)$ or particles velocities $u(\cdot, x_r) = (u_i(\cdot, x_r))_{i=1}^n$ for $x_r \in D$.

D model space, $\Omega = \{x_r, .., x_{N_r}\} \times [0, T]$ data space

The whole temporal evolution is used for the calibration \rightarrow Full Waveform Inversion Highly non-convex problem (cycle skipping)

イロト 不得 トイヨト イヨト 二日

Optimal transport can alleviate non-convexity

Issue: OT defined for probability measures \longrightarrow need to handle the data

э

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Optimal transport can alleviate non-convexity

Issue: OT defined for probability measures \longrightarrow need to handle the data

 $\begin{array}{l} {\sf Kantorovich-Rubenstein}\,\,({\sf KR})\,\,{\sf norm}\\ {\sf For}\,\,\mu,\nu\in\mathcal{M}(\Omega),\,\lambda\in\mathbb{R}_+\colon\\ {\sf KR}(\mu,\nu)=\sup_{\phi}\left\{\int_{\Omega}\phi(\mu-\nu)\,,\,\,|\nabla\phi|\leq1, |\phi|\leq\lambda\right\}\end{array}$

Optimal transport can alleviate non-convexity

Issue: OT defined for probability measures \longrightarrow need to handle the data

 $\begin{array}{l} {\sf Kantorovich-Rubenstein} \ {\sf (KR)} \ {\sf norm}\\ {\sf For} \ \mu,\nu\in {\cal M}(\Omega), \ \lambda\in \mathbb{R}_+\colon\\ {\sf KR}(\mu,\nu)=\sup_{\phi}\left\{\int_{\Omega}\phi(\mu-\nu)\,, \ |\nabla\phi|\leq 1, |\phi|\leq \lambda\right\}\end{array}$

"Relaxed" transport: if $\mu, \nu \in \mathcal{P}(\Omega)$ and $\lambda = +\infty \implies KR(\mu, \nu) = W_1(\mu, \nu)$

 $\mathcal{D} = \mathit{KR}(\mu, \nu) ext{ where } \mu = \mathit{d}_{\mathsf{pred}}[\nu], \nu = \mathit{d}_{\mathsf{obs}} \longrightarrow \mathsf{good results}^1$

¹Métivier et al., 2016

イロト 不得 トイヨト イヨト 二日

Optimal transport can alleviate non-convexity

Issue: OT defined for probability measures \longrightarrow need to handle the data

 $\begin{array}{l} {\sf Kantorovich-Rubenstein} \ ({\sf KR}) \ {\sf norm}\\ {\sf For} \ \mu,\nu\in \mathcal{M}(\Omega), \ \lambda\in \mathbb{R}_+\colon\\ {\sf KR}(\mu,\nu)=\sup_{\phi}\left\{\int_{\Omega}\phi(\mu-\nu)\,, \ |\nabla\phi|\leq 1, |\phi|\leq \lambda\right\}\end{array}$

 $\text{``Relaxed'' transport: if } \mu,\nu\in\mathcal{P}(\Omega) \text{ and } \lambda=+\infty \implies \mathcal{KR}(\mu,\nu)=\mathcal{W}_1(\mu,\nu)$

 $\mathcal{D} = \textit{KR}(\mu,\nu) \text{ where } \mu = \textit{d}_{\textsf{pred}}[\nu], \nu = \textit{d}_{\textsf{obs}} \ \longrightarrow \ \textsf{good results}^1$

If
$$\int_{\Omega} \mu = \int_{\Omega} \nu$$
 and $\lambda \gg 1$ then
 $KR(\mu, \nu) = KR((\mu - \nu)_+, (\mu - \nu)_-) = W_1((\mu - \nu)_+, (\mu - \nu)_-)$

⇒ not convex with respect to shifts

¹Métivier et al., 2016

イロト 不得 トイヨト イヨト 二日

Multi-component data $u(\cdot, x_r)$ and $L : \mathbb{R}^n \to \mathbb{S}^n_+$

æ

< □ > < □ > < □ > < □ > < □ >

Multi-component data $u(\cdot, x_r)$ and $L : \mathbb{R}^n \to \mathbb{S}^n_+$

Pauli's transformation (d = 2):

$$u = (u_x, u_z) \longmapsto \begin{bmatrix} lpha - u_x & u_z \\ u_z & lpha + u_x \end{bmatrix}$$
, with $lpha = \sqrt{u_x^2 + u_z^2}$.

э

Multi-component data $u(\cdot, x_r)$ and $L : \mathbb{R}^n \to \mathbb{S}^n_+$

Pauli's transformation (d = 2):

$$u = (u_x, u_z) \longmapsto \begin{bmatrix} lpha - u_x & u_z \\ u_z & lpha + u_x \end{bmatrix}$$
, with $lpha = \sqrt{u_x^2 + u_z^2}$.

 $\mu = L(u_{\textit{pred}}[v]), \nu = L(u_{\textit{obs}}[v]) \in \mathcal{M}(\Omega; \mathbb{S}^n_+)$

~ .		_	-		
(- b	FIG	<u> </u>	00	ACC	n
Jab		~ 1	00		

イロト イヨト イヨト

Multi-component data $u(\cdot, x_r)$ and $L : \mathbb{R}^n \to \mathbb{S}^n_+$

Pauli's transformation (d = 2):

$$u = (u_x, u_z) \longmapsto \begin{bmatrix} lpha - u_x & u_z \\ u_z & lpha + u_x \end{bmatrix}, \quad \text{with } \alpha = \sqrt{u_x^2 + u_z^2}.$$

 $\mu = L(u_{\textit{pred}}[v]), \nu = L(u_{\textit{obs}}[v]) \in \mathcal{M}(\Omega; \mathbb{S}^n_+)$

Relaxed Beckmann's problem

For $\mu, \nu \in \mathcal{M}(\Omega; V_{+}), \lambda \in \mathbb{R}_{+}$: $\inf_{\substack{\sigma \in \mathcal{M}(\Omega; V^{n}) \\ \delta \in \mathcal{M}(\Omega; V)}} \left\{ \int_{\Omega} |\sigma|_{V^{d}} + \lambda \int_{\Omega} |\delta|_{V}, \operatorname{div}_{V}(\sigma) = \mu - \nu + \delta \right\}$

$$\begin{split} V &= \mathbb{S}^n, V_+ = \mathbb{S}^n_+, V^d = [\mathbb{S}^n]^d, \\ |\cdot|_V \text{ Frobenius norm, } |\cdot|_{V^d} &= \sum_{k=1}^d |\cdot|_V \\ \operatorname{div}_V : \sigma &\mapsto \sum_{i=k}^d \frac{\partial \sigma_k}{\partial x_k} \text{ and the constraint is to be considered in weak form} \end{split}$$

4/14

イロト 不得 トイヨト イヨト 二日

Multi-component data $u(\cdot, x_r)$ and $L : \mathbb{R}^n \to \mathbb{S}^n_+$

Pauli's transformation (d = 2):

$$u = (u_x, u_z) \longmapsto \begin{bmatrix} lpha - u_x & u_z \\ u_z & lpha + u_x \end{bmatrix}$$
, with $lpha = \sqrt{u_x^2 + u_z^2}$.

 $\mu = L(u_{\textit{pred}}[v]), \nu = L(u_{\textit{obs}}[v]) \in \mathcal{M}(\Omega; \mathbb{S}^n_+)$

Relaxed Beckmann's problem

For
$$\mu, \nu \in \mathcal{M}(\Omega; V_{+}), \ \lambda \in \mathbb{R}_{+}$$
:
$$\mathcal{T}^{\lambda}_{p,q}(\mu, \nu) = \inf_{\substack{\sigma \in \mathcal{M}(\Omega; V^{n}) \\ \delta \in \mathcal{M}(\Omega; V)}} \left\{ \frac{1}{p} \int_{\Omega} |\sigma|_{V^{n}}^{p} + \frac{\lambda}{q} \int_{\Omega} |\delta|_{V}^{q}, \ \mathsf{div}_{V}(\sigma) = \mu - \nu + \delta \right\}$$

$$\begin{split} V &= \mathbb{S}^n, V_+ = \mathbb{S}^n_+, V^d = [\mathbb{S}^n]^d, \\ |\cdot|_V \text{ Frobenius norm, } |\cdot|_{V^d} &= \sum_{k=1}^d |\cdot|_V \\ \operatorname{div}_V : \sigma &\mapsto \sum_{i=k}^d \frac{\partial \sigma_k}{\partial x_k} \text{ and the constraint is to be considered in weak form} \end{split}$$

イロト 不得 トイヨト イヨト

Tuning of the model

Remark: the difference of mass can be quite big due to the difference of energy

2

Tuning of the model

Remark: the difference of mass can be quite big due to the difference of energy

Choice of $p, q \in \{1, 2\}$:

- \circ Sensitivity to (small) displacements (optimal transport problem) $\longrightarrow p = 1$

Tuning of the model

Remark: the difference of mass can be quite big due to the difference of energy

Choice of $p, q \in \{1, 2\}$:

- Sensitivity to (small) displacements (optimal transport problem) $\longrightarrow p = 1$
- Penalization proportional to the energy of the signal $\longrightarrow q=2$

Choice of λ :

- For small values, $\mathcal{T}^{\lambda}_{p,q}$ behaves like an L^q distance of $\mu \nu$
- For big values, $\mathcal{T}_{p,q}^{\lambda}$ behaves like an L^{q} distance on "the mass difference"
- Dimensional analysis:

$$[\mu] = [\nu] = A, \ [\sigma] = A \cdot I \quad \longrightarrow \quad [\lambda] = A^{p-q} \cdot I^p$$

where I is a length, A an amplitude

5/14

イロト 不得 トイヨト イヨト

Dual structure is useful for exact solutions, derivatives, numerical computation,...

2

ヘロト ヘロト ヘヨト ヘヨト

Dual structure is useful for exact solutions, derivatives, numerical computation,...

$$egin{aligned} p &= 1, q = 1 \ && \mathcal{T}_{1,1}^\lambda(\mu,
u) = \sup_{\phi \in \mathcal{C}(\Omega;V)} \left\{ \int <\phi,
u-\mu >_V, \ |
abla \phi|_{V^{n}} \leq 1, \ |\phi|_V \leq \lambda
ight\} \end{aligned}$$

 $\longrightarrow\,$ vectorial extension of the KR norm

э

Dual structure is useful for exact solutions, derivatives, numerical computation,...

$$egin{aligned} m{
ho} = 1, m{q} = 1 \ \mathcal{T}_{1,1}^\lambda(\mu,
u) = \sup_{\phi \in C(\Omega; \mathcal{V})} igg\{ \int <\phi,
u - \mu >_V, \ |
abla \phi|_{\mathcal{V}^n} \leq 1, \ |\phi|_{\mathcal{V}} \leq \lambda igg\} \end{aligned}$$

 $\longrightarrow\,$ vectorial extension of the KR norm

$$egin{aligned} m{p} &= 1, m{q} = 2 \ \mathcal{T}_{1,2}^\lambda(\mu,
u) &= \sup_{\phi \in C(\Omega;V)} \left\{ \int_\Omega <\phi,
u-\mu >_V -rac{1}{2\lambda} \int_\Omega |\phi|_V^2 \,, \; |
abla \phi|_{V^n} \leq 1
ight\} \end{aligned}$$

 \longrightarrow quadratic penalization of the potential in the KR

6/14

Dual structure is useful for exact solutions, derivatives, numerical computation,...

$$egin{aligned} m{
ho} &= 1, \, q = 1 \ && \mathcal{T}_{1,1}^\lambda(\mu,
u) = \sup_{\phi \in \mathcal{C}(\Omega; \mathcal{V})} \left\{ \int <\phi,
u-\mu >_V, \; |
abla \phi|_{\mathcal{V}^n} \leq 1, \; |\phi|_{\mathcal{V}} \leq \lambda
ight\} \end{aligned}$$

 \longrightarrow vectorial extension of the KR norm

$$egin{aligned} p &= 1, q = 2 \ \mathcal{T}_{1,2}^\lambda(\mu,
u) &= \sup_{\phi\in\mathcal{C}(\Omega;V)} \left\{ \int_\Omega <\phi,
u-\mu>_V -rac{1}{2\lambda}\int_\Omega |\phi|_V^2\,, \ |
abla \phi|_{V^n} \leq 1
ight\} \end{aligned}$$

 $\longrightarrow\,$ quadratic penalization of the potential in the KR

$$\begin{split} \rho &= 2, q = 2 \\ \mathcal{T}_{2,2}^{\lambda}(\mu,\nu) &= \sup_{\phi} -\frac{1}{2} \int_{\Omega} |\nabla \phi|_{V^n}^2 - \frac{1}{2\lambda} \int_{\Omega} |\phi|_{V}^2 + \int_{\Omega} \langle \phi, \nu - \mu \rangle_{V} \end{split}$$

 \rightarrow not a transport, not coupled...

Consider two delta measures $\mu = M_1 \delta_{x_1}, \nu = M_2 \delta_{x_2}$, $M_1, M_2 \in \mathbb{S}^n_+$

2

Consider two delta measures $\mu = M_1 \delta_{x_1}, \nu = M_2 \delta_{x_2}, M_1, M_2 \in \mathbb{S}^n_+$

 \longrightarrow (generalized) Fermat-Torricelli problem

э

Consider two delta measures $\mu = M_1 \delta_{x_1}, \nu = M_2 \delta_{x_2}, M_1, M_2 \in \mathbb{S}^n_+$ \rightarrow (generalized) Fermat-Torricelli problem The cost $\mathcal{T}_{1,1}^{\lambda}(\mu,\nu)$ is equal to $(\gamma = \frac{\lambda}{|x_1-x_2|})$ $\begin{cases} \lambda(|M_{1}|_{V} + |M_{2}|_{V}) & \text{i} \\ \lambda|M_{1} - M_{2}|_{V} + |x_{1} - x_{2}||M_{1}|_{V} & \text{i} \\ \lambda|M_{1} - M_{2}|_{V} + |x_{1} - x_{2}||M_{2}|_{V} \\ |x_{1} - x_{2}|\Big((\gamma^{2} - \frac{1}{2})|M_{1} - M_{2}|_{V}^{2} + \frac{1}{2}(|M_{1}|_{V}^{2} + |M_{2}|_{V}^{2}) + \\ (4\gamma^{2} - 1)^{\frac{1}{2}}(|M_{1}|_{V}^{2}|M_{2}|_{V}^{2} - \langle M_{1}, M_{2}\rangle_{V}^{2})^{\frac{1}{2}} \Big)^{\frac{1}{2}} \end{cases}$ if $1 + \frac{\langle NI_1, NI_2 \rangle V}{|M_1|_V |M_2|_V} \le \frac{1}{2\gamma^2}$ if $\frac{\langle M_1, M_1 - M_2 \rangle_V}{|M_1|_V |M_1 - M_2|_V} \le -\frac{1}{2\gamma^2}$ if $\frac{\langle M_2, M_2 - M_1 \rangle_V}{|M_2|_V |M_1 - M_2|_V} \le -\frac{1}{22^2}$ else.

17/03/2023

Consider two delta measures $\mu = M_1 \delta_{x_1}, \nu = M_2 \delta_{x_2}, M_1, M_2 \in \mathbb{S}^n_+$ \rightarrow (generalized) Fermat-Torricelli problem The cost $\mathcal{T}_{1,1}^{\lambda}(\mu,\nu)$ is equal to $(\gamma = \frac{\lambda}{|x_1-x_2|})$ $\begin{cases} \lambda(|M_{1}|_{V}+|M_{2}|_{V}) \\ \lambda|M_{1}-M_{2}|_{V}+|x_{1}-x_{2}||M_{1}|_{V} \\ \lambda|M_{1}-M_{2}|_{V}+|x_{1}-x_{2}||M_{2}|_{V} \\ |x_{1}-x_{2}|\Big((\gamma^{2}-\frac{1}{2})|M_{1}-M_{2}|_{V}^{2}+\frac{1}{2}(|M_{1}|_{V}^{2}+|M_{2}|_{V}^{2})+ \\ (4\gamma^{2}-1)^{\frac{1}{2}}(|M_{1}|_{V}^{2}|M_{2}|_{V}^{2}-\langle M_{1},M_{2}\rangle_{V}^{2})^{\frac{1}{2}}\Big)^{\frac{1}{2}} \end{cases}$ if $1 + \frac{\langle NI_1, NI_2 \rangle V}{|M_1|_V |M_2|_V} \le \frac{1}{2\gamma^2}$ if $\frac{\langle M_1, M_1 - M_2 \rangle_V}{|M_1|_V |M_1 - M_2|_V} \le -\frac{1}{2\gamma^2}$ if $\frac{\langle M_2, M_2 - M_1 \rangle_V}{|M_1|_V |M_2|_V |M_2|_V} \leq -\frac{1}{2r^2}$ else. $\gamma \leq \frac{1}{2} \implies$ the first condition is always met $(M_1, M_2 \geq 0)$

・ロト ・ 同ト ・ ヨト ・ ヨト

Consider two delta measures $\mu = M_1 \delta_{x_1}, \nu = M_2 \delta_{x_2}, M_1, M_2 \in \mathbb{S}^n_+$ \rightarrow (generalized) Fermat-Torricelli problem The cost $\mathcal{T}_{1,1}^{\lambda}(\mu,\nu)$ is equal to $(\gamma = \frac{\lambda}{|x_1-x_2|})$ $\begin{cases} \lambda(|M_{1}|_{V}+|M_{2}|_{V}) \\ \lambda|M_{1}-M_{2}|_{V}+|x_{1}-x_{2}||M_{1}|_{V} \\ \lambda|M_{1}-M_{2}|_{V}+|x_{1}-x_{2}||M_{2}|_{V} \\ |x_{1}-x_{2}|\Big((\gamma^{2}-\frac{1}{2})|M_{1}-M_{2}|_{V}^{2}+\frac{1}{2}(|M_{1}|_{V}^{2}+|M_{2}|_{V}^{2})+ \\ (4\gamma^{2}-1)^{\frac{1}{2}}(|M_{1}|_{V}^{2}|M_{2}|_{V}^{2}-\langle M_{1},M_{2}\rangle_{V}^{2})^{\frac{1}{2}}\Big)^{\frac{1}{2}} \end{cases}$ if $1 + \frac{\langle NI_1, NI_2 \rangle V}{|M_1|_V |M_2|_V} \le \frac{1}{2\gamma^2}$ if $\frac{\langle M_1, M_1 - M_2 \rangle_V}{|M_1|_V |M_1 - M_2|_V} \le -\frac{1}{2\gamma^2}$ if $\frac{\langle M_2, M_2 - M_1 \rangle_V}{|M_1|_V|M_2|_V} \leq -\frac{1}{2r^2}$ else. $\gamma \leq \frac{1}{2} \implies$ the first condition is always met $(M_1, M_2 \geq 0)$

 $\longrightarrow\,\lambda$ represents (half) the distance at which mass is transported

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Consider two delta measures $\mu=m_1\delta_{x_1}, \nu=m_2\delta_{x_2}$, $m_1,m_2\in\mathbb{R}_+$

2

Consider two delta measures $\mu=m_1\delta_{x_1}, \nu=m_2\delta_{x_2}, \ m_1,m_2\in\mathbb{R}_+$

The optimal potential is: $\phi(x_1) = a, \phi(x_2) = b$

$$\begin{cases} a = \sqrt{\lambda(m_1 - m_2)}, b = a - |x_1 - x_2| & \text{if } \lambda \ge \frac{|x_1 - x_2|^2}{m_1 - m_2} \\ a = \frac{|x_1 - x_2|}{2} + \frac{\lambda(m_1 - m_2)}{2|x_1 - x_2|}, b = -\frac{|x_1 - x_2|}{2} + \frac{\lambda(m_1 - m_2)}{2|x_1 - x_2|} & \text{if } \lambda \le \frac{|x_1 - x_2|^2}{|m_1 - m_2|} \\ a = \sqrt{\lambda m_1}, b = -\sqrt{\lambda m_2} & \text{if } \lambda \le \frac{|x_1 - x_2|^2}{(\sqrt{m_1} + \sqrt{m_2})^2} \end{cases}$$

2

8/14

イロン イ団 とく ヨン イヨン

Consider two delta measures $\mu=m_1\delta_{x_1}, \nu=m_2\delta_{x_2}$, $m_1,m_2\in\mathbb{R}_+$

The optimal potential is: $\phi(x_1) = a, \phi(x_2) = b$

$$\begin{cases} a = \sqrt{\lambda(m_1 - m_2)}, b = a - |x_1 - x_2| & \text{if } \lambda \ge \frac{|x_1 - x_2|^2}{m_1 - m_2} \\ a = \frac{|x_1 - x_2|}{2} + \frac{\lambda(m_1 - m_2)}{2|x_1 - x_2|}, b = -\frac{|x_1 - x_2|}{2} + \frac{\lambda(m_1 - m_2)}{2|x_1 - x_2|} & \text{if } \lambda \le \frac{|x_1 - x_2|^2}{|m_1 - m_2|} \\ a = \sqrt{\lambda m_1}, b = -\sqrt{\lambda m_2} & \text{if } \lambda \le \frac{|x_1 - x_2|^2}{(\sqrt{m_1} + \sqrt{m_2})^2} \end{cases}$$

 \longrightarrow λ represents the distance at which a unit of mass is transported

8/14

Consider two delta measures $\mu=m_1\delta_{x_1}, \nu=m_2\delta_{x_2}$, $m_1,m_2\in\mathbb{R}_+$

The optimal potential is: $\phi(x_1) = a, \phi(x_2) = b$

$$\begin{cases} a = \sqrt{\lambda(m_1 - m_2)}, b = a - |x_1 - x_2| & \text{if } \lambda \ge \frac{|x_1 - x_2|^2}{m_1 - m_2} \\ a = \frac{|x_1 - x_2|}{2} + \frac{\lambda(m_1 - m_2)}{2|x_1 - x_2|}, b = -\frac{|x_1 - x_2|}{2} + \frac{\lambda(m_1 - m_2)}{2|x_1 - x_2|} & \text{if } \lambda \le \frac{|x_1 - x_2|^2}{|m_1 - m_2|} \\ a = \sqrt{\lambda m_1}, b = -\sqrt{\lambda m_2} & \text{if } \lambda \le \frac{|x_1 - x_2|^2}{(\sqrt{m_1} + \sqrt{m_2})^2} \end{cases}$$

 \longrightarrow λ represents the distance at which a unit of mass is transported

The tuning of λ can be done by choosing a reference transport distance and a reference mass to be transported

	٠.	□ ► < @ ►	◆ 差 ▶ ◆ 差 ▶	10	୬୯୯
Gabriele Todeschi	Les Houches		17/03/2023		8 / 14

Numerical solution

Numerical solution of $\mathcal{T}_{p,q}^{\lambda}$:

- Finite difference discretization
- SDMM algorithm: primal-dual proximal splitting technique
- Bottleneck: solution of a Poisson equation
- The SPD transport does not reflect on the complexity of the algorithm
- $(p = 1, q = 2) \rightarrow$ the higher regularity can be exploited (FISTA, Chambolle-Pock, ...)

< □ > < □ > < □ > < □ > < □ >

Numerical solution

Numerical solution of $\mathcal{T}_{p,q}^{\lambda}$:

- Finite difference discretization
- SDMM algorithm: primal-dual proximal splitting technique
- Bottleneck: solution of a Poisson equation
- The SPD transport does not reflect on the complexity of the algorithm
- $(p = 1, q = 2) \rightarrow$ the higher regularity can be exploited (FISTA, Chambolle-Pock, ...)

Solution of the inverse problem:

- I-BFGS algorithm: requires $\frac{\partial \mathcal{D}(\mu[v],\nu)}{\partial v}$
- Derivative via adjoint state method: requires $rac{\partial \mathcal{T}^{\lambda}_{
 ho,q}(\mu,
 u)}{\partial \mu}$
- thanks to the dual structure:

$$\frac{\partial \mathcal{T}_{p,q}^{\lambda}(\mu,\nu)}{\partial \mu} = \phi$$

9/14

< □ > < □ > < □ > < □ > < □ >

Numerical results: sensitivity to time shift

Gabriele Todeschi

17/03/2023

 $D = [a, b] \times [c, d] \subset \mathbb{R}^2, n = 2, T = 3000, N_r = 169$

 $\Omega = \{x_1, .., x_{N_r}\} \times [0, T] \text{ semi-discrete 2d domain}$

э

イロン イ団 とく ヨン イヨン

 $D = [a, b] \times [c, d] \subset \mathbb{R}^2, n = 2, T = 3000, N_r = 169$ $\Omega = \{x_1, ..., x_{N_r}\} \times [0, T]$ semi-discrete 2d domain

"Dimensional anisotropy": $\tilde{\Omega}=\{x_r,..,x_{N_r}\}\times[0,\,T/\bar{v}]$ where \bar{v} mean velocity

~					
(_{aa}	brie	e	00	esc	hi.

17/03/2023

.⊒ . ⊳

イロト イヨト イヨト イ

 $D = [a, b] \times [c, d] \subset \mathbb{R}^2, n = 2, T = 3000, N_r = 169$ $\Omega = \{x_1, ..., x_{N_r}\} \times [0, T]$ semi-discrete 2d domain

"Dimensional anisotropy": $\tilde{\Omega} = \{x_r, .., x_{N_r}\} \times [0, T/\bar{v}]$ where \bar{v} mean velocity

イロト イヨト イヨト

Gabriele Todeschi

Les Houches

17/03/2023

Conclusions

We introduced an (unbalanced) L1 transport for SPD valued measures to transport multi-component signals

Computationally affordable

Good results for the FWI problem justifying the approach

Applications to other problems can be foreseen

~		
(hria	lacch
Ga	DITC	acacii

イロト イヨト イヨト

Conclusions

We introduced an (unbalanced) L1 transport for SPD valued measures to transport multi-component signals

Computationally affordable

Good results for the FWI problem justifying the approach

Applications to other problems can be foreseen

BUT:

- Rely on a lift function: linked to the physics of the problem at hand
- Sensitivity to the calibration of λ (depending again on the lift/physics)

< □ > < □ > < □ > < □ > < □ >

Thank you for your attention!

~		
	Dista la	locch
- Ga	DHE	esch