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The dynamics of large scale flows

Weather forecast: based on space-time averaged version of the
Navier-Stokes equations, yet pretty accurate =⇒ the large scale
dynamics must control the weather patterns to a large extent.

A specific reduced system of equations valid on large scales are the
semi-geostrophic equations. These equations

I capture the main features of the dynamics

I are amenable to mathematical analysis and robust numerical
computations

I admit solutions modelling singular behaviour (atmospheric
fronts) so can be solved past the front formation
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Semi-geostrophic equations

Assumptions:

I no viscosity (ok for atmosphere)

I Boussinesq approximation: negligible density variations unless
multiplied by g

I Shallow atmosphere (the variable Coriolis force has no effect
in the vertical direction)

I Hydrostatic balance: density is proportional to vertical
pressure variation

I geostrophic balance (valid for strong Coriolis forcing): the
horizontal pressure gradient balances the Coriolis force.
The geostrophic velocity (with f =rotation coefficient) is

vg = (−1

f
∂2p,

1

f
∂1p, 0).

The semigeostrophic equations are a second-order approximation
to the Euler equations - they conserves energy and are valid for
large scales - f can be variable.
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Semi-geostrophic equations - 3D incompressible case

(∂t + u · ∇)(vg1 , v
g
2 ) + (∂1p, ∂2p) = (u2,−u1)

(∂t + u · ∇)ρ = 0, ρ = −∂3p,

(vg1 , v
g
2 ) = (−∂2p, ∂1p), x ∈ Ω ⊂ R3

∇ · u = 0.

unknowns: u = (u1, u2, u3); vg = (v1
g , v

2
g , 0); p; ρ.

Solutions conserve the geostrophic energy

E (t) =

∫
Ω

{
1

2

[
(vg1 )2 + (vg2 )2

]
+ ρx3

}
dx
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Geostrophic formulation of the incompressible system

Achieved via a change of space variable T : Ω→ Y ⊂ R3, Tx = y
- must be well defined and invertible.

Originally, Hoskins’ geostrophic variable change:
P(t, x) = p(t, x) + 1

2 (x2
1 + x2

2 ) and x→ y(t, x) = ∇P(t, x)

The equations become

∂tν +∇ · (Uν) = 0,
ν = T#χΩ, (T = ∇P),

U = J(Id − T−1), J =

(
0 −1 0
1 0 0
0 0 0

)
.

U = vg is the geostrophic velocity.
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Energy minimisation and optimal transport

∂tν + U · ∇ν = 0, U = J(Id − T−1), ν = T#χΩ.

The nonlinear evolution for ν is not determined - need to
determine U or, equivalently, have a selection principle for T .

Energy:

Et(T ) =

∫
Ω

[
1

2
(x1 − T1)2 +

1

2
(x2 − T2)2 − x3T3

]
dx

Energy minimisation ∼ T is the optimal transport map wrt the
(quadratic) cost

c2(x , y) =

[
1

2
(x1 − y1)2 +

1

2
(x2 − y2)2 − x3y3

]
.

Hence T = ∇P, P convex

(Cullen convexity principle and Brenier’s polar factorisation)
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Geostrophic formulation of the compressible system

The compressible system has an analogous formulation in
geostrophic variables: with T : Ω→ Y ⊂ R2 × (ε, 1

ε ),

∂tα +∇ · (Uα) = 0;

α = T#σ, T optimal

U = J(Id − T−1) (=⇒ ∇ · U = 0);

The source measure σ = θρ is an unknown of the problem

T= optimal transport map from σ to α with cost

ccom(x , y) =

[
1
2 (x1 − y1)2 + 1

2 (x2 − y2)2 + Φ(x)
]

y3
.

(Φ(x) is the given geopotential, here = −x3)
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Geostrophic energy and minimisation

Incompressible system: The minimum of the energy is

Et(ν) = inf
T :T#χΩ=ν

∫
Ω

[
1

2
(x1 − T1)2 +

1

2
(x2 − T2)2 − x3T3

]
dx ,

Compressible system: The minimum of the energy is

Et(σ;α) = inf
T :T#σ=α

∫
Ω

[
1
2 (x1 − T1)2 + 1

2 (x2 − T2)2 + Φ(x)
]

T3
dσ(x)

+ κ

∫
Ω
σγ dx , σ = arg min

Pac(Ω)
E (σ;α),

( γ ∈ (1, 2) is the ratio of specific heats and κ is a constant)
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Incompressible vs compressible

Incompressible: Compressible:

∂tν +∇ · (Uν) = 0 ∂tα +∇ · (Uα) = 0
ν = T#χΩ; T optimal for c2 α = T#σ, T optimal for ccom
U = J(Id − T−1) U = J(Id − T−1)

Energy minimisation: Energy minimisation:

E = inf
T :T#χΩ=ν

∫
Ω
c2(x,Tx)dx E = inf

T :T#σ=α

∫
Ω
ccom(x,Tx) dσ(x)

+κ
∫

Ω σ
γ dx

σ = arg minPac(Ω) E (σ;α)

E = Et(ν) E = Et(σ;α)
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BB’s existence proof strategy (incompressible)

Tt = ∇Pt - optimal transport map at each fixed time t
ν - must satisfy (weakly) the transport equation

∂tν +∇ · (Uν) = 0, U(t, y) = J(y −∇P∗(t, y))

with velocity U(t,X ) = J(y −∇P∗(t, y)) not Lipschitz - only BV

Time stepping argument (h = ∆t):

Assume at tk = kh, Pk convex and αk = ∇Pk#χΩ

• define Uk(y) = J(y −∇P∗k )
• solve ∂tα +∇ · (Ukα) = 0 for t ∈ (kh, (k + 1)h)
(needs regularisation)
• define αk+1 = α(·, t(k + 1))
• set Pk+1 = solution of optimal transport from χΩ to αk+1

then take regularisation and h→ 0 limit.
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Semi-discrete optimal transport approach - incompressible

Proof using space rather than time discretisation - semi-discrete
optimal transport techniques:

1. discrete geostrophic solutions with well-prepared initial data
given by a discrete probability measure exist, are unique, and
are defined by trajectories that are twice continuously
differentiable in time;

2. Lipschitz-in-time solutions of SG in geostrophic coordinates
with arbitrary compactly-supported initial probability measure
can be constructed as the uniform limit of a sequence of
discrete geostrophic solutions as in 1.

Note: numerical geometric method for the Eady slice based on
semi-discrete OT (Cotter & al 2018)

Well-prepared means: seeds lie in distinct horizontal planes
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Space discretisation, aka the geometric method

∂tν + div(νU) = 0 in R3 × (0, τ), ν(t = 0) = ν0

ν0 ∈Pac(Y)
PDE for ν−→ ν(t)y x N →∞

νN0 =
1

N

N∑
i=1

δz i0
ODE for z it−→ νNt =

1

N

N∑
i=1

δz it

well-prepared, ż it = ui

νN0 →N→∞ ν0

(zt = (z1
t , .., z

N
t ) ∈ (R3)N seed vector defining νNt )
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How to define the transport velocity ui ∼ semi-discrete OT

For νNt defined by the seed vector z of N points, weights mi (= 1
N )

TN = optimal transport map from LΩ to νNt with quadratic cost

= arg min
T :Ω→R3

{∫
Ω

|TN(x)− x |2 dx : TN#χΩ = νNt

}

TN must be of the form TN =
N∑
i=1

z iCi , Ci = tessellation of Ω, |(Ci )| = mi .

TN
t−→
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Laguerre tessellations and the nonlocal transport velocity ui

Optimal transport = optimal partition problem solved by Laguerre
cells Ci (z,w),

Ci (z,w) = {x ∈ Ω : |x − zi |2 − wi ≤ |x − zj |2 − wj , ∀j = 1, ..,N}.

with w optimal weight= maximiser of the Kantorovich functional

w = max
w∈RN

N∑
i=1

[
miwi +

∫
Ci (z,w)

[(x− z i )2 − wi ]dx

]
.

Then the discrete transport velocity ui is

ui (t) := U(y , t)
∣∣
y=z it

= J(z it − ci (t))

where ci (t) is the centroid of Ci (z,w) = (TN
t )−1({z it}):

ci (t) =
1

|Ci (z,w)|

∫
Ci (z,w)

xdx
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Statement of the existence results - incompressible

Theorem 1
Let Ω ⊂ R3 be open, bounded and convex, and N ≥ 2. For any
τ > 0 and any well-prepared discrete probability measure νN0 , there
exists a unique zN ∈ C 2([0, τ ], (R3)N) such that
νNt ∈ C ([0, τ ],P(R3)) is a discrete geostrophic solution with
initial measure νN0 . Moreover, this solution is energy-conserving.

Theorem 2 (cfr. Loeper, Feldman-Tudorascu)
Let Ω ⊂ R3 be open, bounded and convex,. For any τ > 0 and any
ν0 ∈P(R3), there exists an energy-conserving geostrophic solution
νt ∈ C 0,1([0, τ ],P(R3)) with initial measure ν0, obtained as the
limit in W2 of a sequence νNt of discrete solutions as in Thm 1:

lim
N→∞

sup
t∈[0,τ ]

W2(νNt , νt) = 0.
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2D Gaussian initial condition - seeds and cells
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2D Gaussian initial condition - seeds and cells
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Discrete solutions of the compressible system - what
changes?

The compressible system has associated geostrophic energy

E (σ;α) = inf
T :T#σ=α

∫
Ω
ccom(x,Tx)dσ(x) + κ

∫
Ω
σγ dx,

with ccom(x,Tx) =

[
1
2 (x1 − T1)2 + 1

2 (x2 − T2)2 − x3

]
T3

(non-symmetric, twisted cost) and is given by

∂tα +∇ · (Uα) = 0

α = T#σ, T optimal for ccom

U = J(Id − T−1),

σ = arg min
Pac(Ω)

E (σ;α).

we can prove the same results, but with significant technical
differences to overcome in the proof.

March 13, 2023 BP



c-Laguerre cells and optimal transport

Given a seed vector z ∈ (R3)N and a weight vector w ∈ RN , the
c-Laguerre cells Lci are

Lci (z,w(z)) = {x ∈ Ω : c(x, zi )− wi (z) ≤ c(x, zj)− wj(z) ∀ j = 1, . . . ,N}.

The optimal weight w∗ coupled with the minimiser σ of the energy
defines the optimal semi-discrete transport

TN =
N∑
i=1

ziχLc
i (z,w∗), σ(Lci ) = mi (=

1

N
)

and the optimal centroid map (∼ (TN)−1)

C(z,w∗) = (c1, ...cN), ci (z,w
∗) =

1

σ(Lci (z,w∗(z)))

∫
Lc
i (z,w∗(z))

xdσ (x)

Optimal transport problem ⇐⇒ optimal weight w∗ and arg min
σ∈Pac(Ω)

E
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Optimal pair (w, σ), given αN ∼ z ∈ (R3)N

Energy functional (Tc(σ, αN)=optimal transport map for ccom):

E (σ, αN) = Tc(σ, αN) +

∫
Ω
f (σ(x))dx , f (s) = κ|s|γ .

The dual energy functional can be shown to be (cfr. Sarrazin)

g(w , αN) =
N∑
i=1

[
miwi −

∫
Lci (z,w)

f ∗(wi − c(x, zi ))dx

]
.

Optimality condition for (w, σ):∫
Lci (z,w)

(f ∗)′(wi − c(x, zi ) dx = mi , σ(x) = (f ∗)′(wi − c(x, zi )).

f ∗= Legendre-Fenchel transform of f
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Differentiability of the discrete transport velocity

ui (t) := J(z it − ci (t)), where

ci (z,w
∗) =

1

σ
(
Lci (z,w∗(z))

) ∫
Lci (z,w∗(z))

x dσ (x)

so differentiability properties depend on differentiability wrt z of the
centroid map and of the weight - namely that these maps are C 1.

Crucial geometric properties of the c-Laguerre tessellation: the
cost ccom satisfies the conditions of De Gournay et al
(provided Ω does not contain any section of a paraboloid of the
form x3 = −1

2 (x2
1 + x2

2 ) + L(x1, x2))

Note: ccom does not satisfy the regularity conditions due to
Loeper, which would imply those of De Gournay et al
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c-Laguerre cells (vertical slices in the x1, x3 plane)

Figure: 5 c-Laguerre cells Figure: 10 c-Laguerre cells
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c-Laguerre cells - cont

Figure: 25 c-Laguerre cells Figure: 50 c-Laguerre cells
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Conclusions

Using these properties, we can prove the differentiability of centroid
and optimal weight maps wrt z, and then the proof of both results
is then analogous to the one for the incompressible system.

We can also prove that the discrete solutions conserve energy

I Basis for effective numerical schemes (incompressible Eady
slice, shallow water - 3D in progress) that are
energy-conserving;

I Possible basis for an explicit and intuitive connection between
geostrophic coordinates and corresponding flows in the
physical domain.
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Appendix: the geometric conditions of De Gournay et al

1. For all 1 ≤ i ≤ n, (x, y) 7→ c(x, yi ) is W 2,∞(X × B(y0, r)),
where B(y0, r) is a ball around the point y0.

2. There exists ε > 0 such that for all 1 ≤ k 6= i ≤ n, ∀ x ∈ e ik∥∥∥∇xc(x, yi )−∇xc(x, yk)
∥∥∥ ≥ ε.

3. For all i , there exists s > 0 and C > 0 such that for all
0 ≤ k 6= j ≤ n and ε, ε′ ∈ (0, s), it holds∣∣Nik(ε) ∩Nij(ε

′)
∣∣ ≤ Cεε′ lim

ε→0
Hd−1

(
e ik ∩Nij(ε)

)
= 0,

for Nik(ε) the ε thickening of the edge e ik .

4. There exists C > 0 such that for all i , j

Hd−1(e ij ∩ X ) ≤ C .
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