Optimal transport problems in microstructure modelling

David Bourne

Heriot-Watt University & Maxwell Institute for Mathematical Sciences

Optimal Transport Theory and Applications to Physics, École de Physique des Houches, 13-17 March 2023

(ロ) (同) (三) (三) (三) (○) (○)

Collaborators

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Steve Roper: University of Glasgow
- Mason Pearce: PhD student, Heriot-Watt University
- Piet Kok: Tata Steel R&D (retired) & Ghent University
- Wil Spanjer: Tata Steel R&D (retired)
- Karo Sedighiani: Tata Steel R&D

Today's talk

How optimal transport theory can be used to generate geometric models of the microstructure of steels, foams, concrete, ...

Part I: Background in steel

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Atoms in metals form lattices.

• Atoms in metals form lattices.

- Atoms in metals form lattices.
- Zoom out: Metals are composed of grains.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Atoms in metals form lattices.
- Zoom out: Metals are composed of grains.

 Grains often resemble polyhedra. Under idealised cooling conditions, grains would form a Voronoi diagram.

• High-performance steels: Grains of different sizes & shapes.

Figure: Left: DC06 steel grade. Right: Dual phase steel.

・ コット (雪) (小田) (コット 日)

• High-performance steels: Grains of different sizes & shapes.

Figure: Left: DC06 steel grade. Right: Dual phase steel.

• Grain geometry affects the mechanical properties of steel.

• High-performance steels: Grains of different sizes & shapes.

Figure: Left: DC06 steel grade. Right: Dual phase steel.

(ロ)、(型)、(E)、(E)、(E)、(D)、(C)

- Grain geometry affects the mechanical properties of steel.
- Goal of Tata Steel: Improve steel grades (alloys) and steel-forming processes by controlling the size and geometry of the grains.

Multiscale microstructure modelling

Approach: Computational homogenisation

- Geometric modelling: Generate a geometric model (Voronoi tessellation or Laguerre tessellation) of the steel microstructure.
- Computational plasticity: Assign mechanical propertes to each grain. Simulate standard mechanical tests (uni-axial load, shear).

・ コット (雪) (小田) (コット 日)

Our goal

Generate geometric models of the microstructure of polycrystalline materials (Laguerre diagrams) with prescribed geometric properties:

- grain size distributions
- spatial distributions
- aspect ratio distributions

Part II: Background in semi-discrete OT

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Laguerre tessellations

The Laguerre tessellation of $\Omega \subset \mathbb{R}^d$ generated by the weighted points $\{(x_i, w_i)\}_{i=1}^n, x_i \in \Omega, w_i \in \mathbb{R}$, is the partition $\{L_i\}_{i=1}^n$ of Ω defined by

$$L_i = \{ x \in \Omega : |x - x_i|^2 - w_i \le |x - x_j|^2 - w_j \ \forall j \}.$$

Laguerre cells are convex polygons in 2D and polyhedra in 3D.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

• Source measure: Lebesgue measure $\mathcal{L}^d \sqcup \Omega$, $\Omega \subset \mathbb{R}^d$

- Source measure: Lebesgue measure $\mathcal{L}^d \sqcup \Omega$, $\Omega \subset \mathbb{R}^d$
- Discrete target measure: $\sum_{i=1}^{n} v_i \delta_{x_i}, x_i \in \Omega, \sum_i v_i = \mathcal{L}^d(\Omega)$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Source measure: Lebesgue measure $\mathcal{L}^d \sqcup \Omega$, $\Omega \subset \mathbb{R}^d$
- Discrete target measure: $\sum_{i=1}^{n} v_i \delta_{x_i}, x_i \in \Omega, \sum_i v_i = \mathcal{L}^d(\Omega)$
- Semi-discrete transport problem:

$$W_2^2\Big(\mathcal{L}^d \sqcup \Omega, \sum_i v_i \delta_{x_i}\Big) = \min_{\substack{\text{partitions } \{U_i\} \text{ of } \Omega \\ \mathcal{L}^d(U_i) = v_i \ \forall \ i}} \sum_i \int_{U_i} |x - x_i|^2 \, dx$$

・ コット (雪) (小田) (コット 日)

- Source measure: Lebesgue measure $\mathcal{L}^d \sqcup \Omega$, $\Omega \subset \mathbb{R}^d$
- Discrete target measure: $\sum_{i=1}^{n} v_i \delta_{x_i}, x_i \in \Omega, \sum_i v_i = \mathcal{L}^d(\Omega)$
- Semi-discrete transport problem:

$$W_2^2\Big(\mathcal{L}^d \, \llcorner \, \Omega, \sum_i v_i \delta_{x_i}\Big) = \min_{\substack{\text{partitions } \{U_i\} \text{ of } \Omega \\ \mathcal{L}^d(U_i) = v_i \ \forall \ i}} \sum_i \int_{U_i} |x - x_i|^2 \, dx$$

The optimal partition is a Laguerre tessellation $\{L_i\}$ with cells of volume $\{v_i\}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Part III: Main results

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Our goal

Generate geometric models of the microstructure of polycrystalline materials (Laguerre diagrams) with prescribed geometric properties:

- grain size distributions
- spatial distributions
- aspect ratio distributions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Bourne, Kok, Roper & Spanjer (2020), Bourne, Pearce & Roper (2023)

Question posed to us by Tata Steel: How do you generate a Laguerre diagram with polyhedra (grains) of given volumes v_1, \ldots, v_n ?

Question posed to us by Tata Steel: How do you generate a Laguerre diagram with polyhedra (grains) of given volumes v_1, \ldots, v_n ?

(ロ) (同) (三) (三) (三) (○) (○)

Solution: Semi-discrete optimal transport

Question posed to us by Tata Steel: How do you generate a Laguerre diagram with polyhedra (grains) of given volumes v_1, \ldots, v_n ?

Solution: Semi-discrete optimal transport

• For any x_1, \ldots, x_n , solve the semi-discrete transport problem

$$W_2\Big(1,\sum_{i=1}^n v_i\delta_{x_i}\Big).$$

A D F A 同 F A E F A E F A Q A

If $\{L_i\}_{i=1}^n$ is the optimal Laguerre tessellation, then $\mathcal{L}^d(L_i) = v_i$.

Question posed to us by Tata Steel: How do you generate a Laguerre diagram with polyhedra (grains) of given volumes v_1, \ldots, v_n ?

Solution: Semi-discrete optimal transport

• For any x_1, \ldots, x_n , solve the semi-discrete transport problem

$$W_2\Big(1,\sum_{i=1}^n v_i\delta_{x_i}\Big).$$

If $\{L_i\}_{i=1}^n$ is the optimal Laguerre tessellation, then $\mathcal{L}^d(L_i) = v_i$.

• Very fast algorithms (damped Newton method) and software:

Kitagawa, Mérigot & Thibert (2019), A. Gallouët, Mérigot & Thibert (2022), Lévy, Mohayaee & von Hausegger (2021), Lévy (2015), Mérigot (2011), ... pysdot (Mérigot & Leclerc), Geogram (Lévy), sdot (Meyron), MATLAB-SDOT

Our goal

Generate geometric models of the microstructure of polycrystalline materials (Laguerre diagrams) with prescribed geometric properties:

- grain size distributions
- spatial distributions
- aspect ratio distributions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Bourne, Kok, Roper & Spanjer (2020), Bourne, Pearce & Roper (2023)

Question posed to us by Tata Steel: How do you generate a Laguerre diagram with polyhedra (grains) of given volumes v_1, \ldots, v_n ?

Solution: Semi-discrete optimal transport.

• For any x_1, \ldots, x_n , solve the semi-discrete transport problem

$$W_2\Big(1,\sum_{i=1}^n v_i\delta_{x_i}\Big).$$

If $\{L_i\}_{i=1}^n$ is the optimal Laguerre tessellation, then $\mathcal{L}^d(L_i) = v_i$.

Question posed to us by Tata Steel: How do you generate a Laguerre diagram with polyhedra (grains) of given volumes v_1, \ldots, v_n ?

Solution: Semi-discrete optimal transport.

• For any x_1, \ldots, x_n , solve the semi-discrete transport problem

$$W_2\Big(1,\sum_{i=1}^n v_i\delta_{x_i}\Big).$$

If $\{L_i\}_{i=1}^n$ is the optimal Laguerre tessellation, then $\mathcal{L}^d(L_i) = v_i$.

• Choice of x_1, \ldots, x_n gives some control over the spatial distribution.

Question posed to us by Tata Steel: How do you generate a Laguerre diagram with polyhedra (grains) of given volumes v_1, \ldots, v_n ?

Solution: Semi-discrete optimal transport.

• For any x_1, \ldots, x_n , solve the semi-discrete transport problem

$$W_2\Big(1,\sum_{i=1}^n v_i\delta_{x_i}\Big).$$

If $\{L_i\}_{i=1}^n$ is the optimal Laguerre tessellation, then $\mathcal{L}^d(L_i) = v_i$.

- Choice of x_1, \ldots, x_n gives some control over the spatial distribution.
- Generate 'regular' microstructures by solving a quantization problem:

$$\min_{\{x_1,\dots,x_n\}} W_2\left(1,\sum_{i=1}^n v_i\delta_{x_i}\right)$$

Question posed to us by Tata Steel: How do you generate a Laguerre diagram with polyhedra (grains) of given volumes v_1, \ldots, v_n ?

Solution: Semi-discrete optimal transport.

• For any x_1, \ldots, x_n , solve the semi-discrete transport problem

$$W_2\Big(1,\sum_{i=1}^n v_i\delta_{x_i}\Big).$$

If $\{L_i\}_{i=1}^n$ is the optimal Laguerre tessellation, then $\mathcal{L}^d(L_i) = v_i$.

- Choice of x_1, \ldots, x_n gives some control over the spatial distribution.
- Generate 'regular' microstructures by solving a quantization problem:

$$\min_{\{x_1,\dots,x_n\}} W_2\Big(1,\sum_{i=1}^n v_i\delta_{x_i}\Big)$$

Algorithms/convergence: Mérigot, Santambrogio & Sarrazin (2021), B., Kok, Roper & Spanjer (2020), Xin, Lévy et al. (2016), Mérigot & Mirebeau (2016)

Example

Dual phase microstructure: 30 grains area a, 10 grains area 10a

Figure: Left: *x_i* drawn at random. Right: Locally-optimal quantizer.

・ロト ・聞ト ・ヨト ・ヨト

ъ

$$\min_{\{x_1,\dots,x_n\}} E(x_1,\dots,x_n), \qquad E(x_1,\dots,x_n) = W_2\Big(1,\sum_{i=1}^n v_i \delta_{x_i}\Big)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

$$\min_{\{x_1,\dots,x_n\}} E(x_1,\dots,x_n), \qquad E(x_1,\dots,x_n) = W_2\Big(1,\sum_{i=1}^n v_i\delta_{x_i}\Big)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

• Critical points of E: Centroidal Laguerre tessellations

$$\min_{\{x_1,\dots,x_n\}} E(x_1,\dots,x_n), \qquad E(x_1,\dots,x_n) = W_2\Big(1,\sum_{i=1}^n v_i\delta_{x_i}\Big)$$

- Critical points of E: Centroidal Laguerre tessellations
- Generalised Lloyd's algorithm. Iteration k:

- $\{L_i^{(k)}\}$ = optimal partition for OT problem $W_2\left(1, \sum_{i=1}^n v_i \delta_{x_i^{(k)}}\right)$

(日) (日) (日) (日) (日) (日) (日)

-
$$x_i^{(k+1)} = \operatorname{centroid}(L_i^{(k)}) \ \forall i$$

$$\min_{\{x_1,\dots,x_n\}} E(x_1,\dots,x_n), \qquad E(x_1,\dots,x_n) = W_2\Big(1,\sum_{i=1}^n v_i\delta_{x_i}\Big)$$

- Critical points of E: Centroidal Laguerre tessellations
- Generalised Lloyd's algorithm. Iteration k:

- $\{L_i^{(k)}\}$ = optimal partition for OT problem $W_2\left(1, \sum_{i=1}^{n} v_i \delta_{x_i^{(k)}}\right)$

-
$$x_i^{(k+1)} = \operatorname{centroid}(L_i^{(k)}) \ \forall i$$

 Convergence: Mérigot, Santambrogio & Sarrazin (2021), Bourne, Kok, Roper & Spanjer (2020)

(日) (日) (日) (日) (日) (日) (日)

$$\min_{\{x_1,\dots,x_n\}} E(x_1,\dots,x_n), \qquad E(x_1,\dots,x_n) = W_2\Big(1,\sum_{i=1}^n v_i \delta_{x_i}\Big)$$

- Critical points of E: Centroidal Laguerre tessellations
- Generalised Lloyd's algorithm. Iteration k:

-
$$\{L_i^{(k)}\}=$$
 optimal partition for OT problem $W_2\Big(1,\sum_{i=1}^n v_i\delta_{x_i^{(k)}}\Big)$

-
$$x_i^{(k+1)} = \operatorname{centroid}(L_i^{(k)}) \quad \forall i$$

- Convergence: Mérigot, Santambrogio & Sarrazin (2021), Bourne, Kok, Roper & Spanjer (2020)
- Non-convexity: Non-convexity is our friend!

n

i=1

Using non-convexity to control spatial distribution

Initial choice of seeds $x_i^{(0)}$ has a big effect on the pattern:

Using non-convexity to control spatial distribution

Initial choice of seeds $\boldsymbol{x}_i^{(0)}$ has a big effect on the pattern:

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Using non-convexity to control spatial distribution

Initial choice of seeds $x_i^{(0)}$ has a big effect on the pattern:

・ロト ・ 四ト ・ ヨト ・ ヨト

Optimal transport with periodic quadratic cost

Same method works for periodic Laguerre tessellations (important for computational homogenisation), where

$$L_i^{\text{per}} = \{ x \in \Omega : |x - x_i|_{\text{per}}^2 - w_i \le |x - x_j|_{\text{per}}^2 - w_j \ \forall j \}.$$

Bourne, Pearce & Roper (2023)

Our goal

Generate geometric models of the microstructure of polycrystalline materials (Laguerre diagrams) with prescribed geometric properties:

- grain size distributions
- spatial distributions
- aspect ratio distributions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Fitting volumes and centroids

Question: Given a list of target volumes v_1, \ldots, v_n and target centroids c_1, \ldots, c_n , find a Laguerre tessellation $\{L_i\}_{i=1}^n$ with grains of correct volume and 'minimum centroid error'.

(ロ) (同) (三) (三) (三) (○) (○)

Fitting volumes and centroids

Question: Given a list of target volumes v_1, \ldots, v_n and target centroids c_1, \ldots, c_n , find a Laguerre tessellation $\{L_i\}_{i=1}^n$ with grains of correct volume and 'minimum centroid error'.

Notation: The centroid (barycentre) of a grain L_i is

$$b(L_i) = \frac{1}{\mathcal{L}^d(L_i)} \int_{L_i} x \, \mathrm{d}x.$$

(ロ) (同) (三) (三) (三) (○) (○)

Theorem (B., Pearce, Roper)

Given a list of target volumes v_1, \ldots, v_n and target centroids c_1, \ldots, c_n , suppose there exists a Laguerre tessellation $\{L_i(X^*, w^*)\}_{i=1}^n$ such that $\mathcal{L}^d(L_i) = v_i$ and $b(L_i) = c_i$ for all *i*. Then

Theorem (B., Pearce, Roper)

Given a list of target volumes v_1, \ldots, v_n and target centroids c_1, \ldots, c_n , suppose there exists a Laguerre tessellation $\{L_i(X^*, w^*)\}_{i=1}^n$ such that $\mathcal{L}^d(L_i) = v_i$ and $b(L_i) = c_i$ for all *i*. Then

1. The Laguerre diagram is unique.

Theorem (B., Pearce, Roper)

Given a list of target volumes v_1, \ldots, v_n and target centroids c_1, \ldots, c_n , suppose there exists a Laguerre tessellation $\{L_i(X^*, w^*)\}_{i=1}^n$ such that $\mathcal{L}^d(L_i) = v_i$ and $b(L_i) = c_i$ for all *i*. Then

1. The Laguerre diagram is unique.

(The *grains* are unique. The seeds can be uniformly translated and dilated, $x'_i = \lambda x_i + t$ for all *i*, without changing the grains L_i .)

Theorem (B., Pearce, Roper)

Given a list of target volumes v_1, \ldots, v_n and target centroids c_1, \ldots, c_n , suppose there exists a Laguerre tessellation $\{L_i(X^*, w^*)\}_{i=1}^n$ such that $\mathcal{L}^d(L_i) = v_i$ and $b(L_i) = c_i$ for all *i*. Then

1. The Laguerre diagram is unique.

Theorem (B., Pearce, Roper)

Given a list of target volumes v_1, \ldots, v_n and target centroids c_1, \ldots, c_n , suppose there exists a Laguerre tessellation $\{L_i(X^*, w^*)\}_{i=1}^n$ such that $\mathcal{L}^d(L_i) = v_i$ and $b(L_i) = c_i$ for all *i*. Then

- 1. The Laguerre diagram is unique.
- 2. The seeds $X^* = (x_1^*, \dots, x_n^*)$ maximise the concave function $H : (\mathbb{R}^d)^n \to \mathbb{R}$,

$$H(X) = \frac{1}{2}W_2^2 \left(1, \sum_{i=1}^n v_i \delta_{x_i}\right) + \sum_{i=1}^n v_i c_i \cdot x_i - \frac{1}{2}\sum_{i=1}^n v_i |x_i|^2.$$

Theorem (B., Pearce, Roper)

Given a list of target volumes v_1, \ldots, v_n and target centroids c_1, \ldots, c_n , suppose there exists a Laguerre tessellation $\{L_i(X^*, w^*)\}_{i=1}^n$ such that $\mathcal{L}^d(L_i) = v_i$ and $b(L_i) = c_i$ for all *i*. Then

- 1. The Laguerre diagram is unique.
- 2. The seeds $X^* = (x_1^*, \dots, x_n^*)$ maximise the concave function $H : (\mathbb{R}^d)^n \to \mathbb{R}$,

$$H(X) = \frac{1}{2}W_2^2 \left(1, \sum_{i=1}^n v_i \delta_{x_i}\right) + \sum_{i=1}^n v_i c_i \cdot x_i - \frac{1}{2}\sum_{i=1}^n v_i |x_i|^2.$$

H is C^1 on the set $\{(x_1, \ldots, x_n) \in (\mathbb{R}^d)^n : x_i \neq x_j \ \forall i \neq j\}$ and

$$\frac{\partial H}{\partial x_i} = v_i(c_i - b(L_i)).$$

(Mérigot, Santambrogio & Sarrazin (2021))

Preliminary results: General case

Given a list of target volumes v_1, \ldots, v_n and target centroids c_1, \ldots, c_n , find a Laguerre tessellation $\{L_i\}_{i=1}^n$ such that $\mathcal{L}^d(L_i) = v_i$ for all i and $\sum_i |v_i(b(L_i) - c_i)|^2$ is minimal.

Left: EBSD image. Right: Fitted diagram. The blue dots are the target centroids, the red dots are the actual centroids.

Our goal

Generate geometric models of the microstructure of polycrystalline materials (Laguerre diagrams) with prescribed geometric properties:

- grain size distributions
- spatial distributions
- aspect ratio distributions

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

We can represent anisotropic microstructures by anisotropic Laguerre diagrams.

A. Alpers, A. Brieden, P. Gritzmann, A. Lyckegaard, and H.F. Poulsen. Generalized balanced power diagrams for 3D representations of polycrystals. *Philos. Mag.* 95(9): 1016-1028, 2015.

(ロ) (同) (三) (三) (三) (○) (○)

The anisotropic Laguerre tessellation generated by the weighted points $\{(x_i, w_i, A_i)\}_{i=1}^n$, where $x_i \in \Omega$, $w_i \in \mathbb{R}$, A_i are SPD matrices, is the partition $\{L_i\}_{i=1}^n$ of Ω defined by

$$L_{i} = \left\{ x \in \Omega : |x - x_{i}|_{A_{i}}^{2} - w_{i} \le |x - x_{j}|_{A_{j}}^{2} - w_{j} \forall j \right\}$$

A D F A 同 F A E F A E F A Q A

where $|\cdot|_A$ is the A-norm: $|x - x_i|_A^2 = (x - x_i) \cdot A(x - x_i)$.

The anisotropic Laguerre tessellation generated by the weighted points $\{(x_i, w_i, A_i)\}_{i=1}^n$, where $x_i \in \Omega$, $w_i \in \mathbb{R}$, A_i are SPD matrices, is the partition $\{L_i\}_{i=1}^n$ of Ω defined by

$$L_{i} = \left\{ x \in \Omega : |x - x_{i}|_{A_{i}}^{2} - w_{i} \le |x - x_{j}|_{A_{j}}^{2} - w_{j} \forall j \right\}$$

where $|\cdot|_A$ is the A-norm: $|x - x_i|_A^2 = (x - x_i) \cdot A(x - x_i)$.

The A_i matrices give some control over the aspect ratio of the cells.

Q. Can we choose the generators $(x_1, w_1, A_1), \ldots, (x_n, w_n, A_n)$ so that the anisotropic Laguerre cells have desired volumes v_1, \ldots, v_n ?

(ロ) (同) (三) (三) (三) (○) (○)

Q. Can we choose the generators $(x_1, w_1, A_1), \ldots, (x_n, w_n, A_n)$ so that the anisotropic Laguerre cells have desired volumes v_1, \ldots, v_n ?

(ロ) (同) (三) (三) (三) (○) (○)

A. Yes. Solution(s) using optimal transport theory:

Q. Can we choose the generators $(x_1, w_1, A_1), \ldots, (x_n, w_n, A_n)$ so that the anisotropic Laguerre cells have desired volumes v_1, \ldots, v_n ?

A. Yes. Solution(s) using optimal transport theory:

• For any $\{x_i\}$, $\{A_i\}$, solve the semi-discrete transport problem

$$W_c\left(1,\sum_{i=1}^n v_i\delta_{x_i}\right)$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

with anisotropic cost $c(x, x_i) = |x - x_i|_{A_i}^2$.

Q. Can we choose the generators $(x_1, w_1, A_1), \ldots, (x_n, w_n, A_n)$ so that the anisotropic Laguerre cells have desired volumes v_1, \ldots, v_n ?

A. Yes. Solution(s) using optimal transport theory:

• For any $\{x_i\}$, $\{A_i\}$, solve the semi-discrete transport problem

$$W_c\left(1,\sum_{i=1}^n v_i\delta_{x_i}\right)$$

with anisotropic cost $c(x, x_i) = |x - x_i|_{A_i}^2$.

The optimal partition {L_i}ⁿ_{i=1} is an anisotropic Laguerre tessellation and L^d(L_i) = v_i ∀ i.

Q. Can we choose the generators $(x_1, w_1, A_1), \ldots, (x_n, w_n, A_n)$ so that the anisotropic Laguerre cells have desired volumes v_1, \ldots, v_n ?

A. Yes. Solution(s) using optimal transport theory:

• For any {x_i}, {A_i}, solve the semi-discrete transport problem

$$W_c\left(1,\sum_{i=1}^n v_i\delta_{x_i}\right)$$

with anisotropic cost $c(x, x_i) = |x - x_i|_{A_i}^2$.

- The optimal partition {L_i}ⁿ_{i=1} is an anisotropic Laguerre tessellation and L^d(L_i) = v_i ∀ i.
- Implementation: Maximise the concave function $\mathcal{K}: \mathbb{R}^n \to \mathbb{R}$,

$$\mathcal{K}(w) = \sum_{i=1}^{n} \int_{L_i(w)} (|x - x_i|_{A_i}^2 - w_i) \, \mathrm{d}x + \sum_{i=1}^{n} v_i w_i$$

where

$$L_i(w) = \{ x \in \Omega \ : \ |x - x_i|_{A_i}^2 - w_i \le |x - x_j|_{A_j}^2 - w_j \ \forall j \}.$$

Example

Dual phase microstructure: 100 cells: 70 small cells of area a, 30 large cells of area 10a (error less than 1%). The large cells have two different A_i (15 of each type):

Fitting anisotropic diagrams to EBSD data

Basic fitting: Take x_i , A_i , v_i from EBSD data (grain centroids, ellipsoids, volumes) - solve the semi-discrete OT problem for w_i .

Left: EBSD image from Tata Steel.

Right: Anisotropic Laguerre.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Implementation issues

Question: How can we compute anisotropic diagrams efficiently?

Implementation issues

Question: How can we compute anisotropic diagrams efficiently?

- Pixel method. Compute the "anisotropic distance" $(p_i x_j) \cdot A_j(p_i x_j) w_j$ between every pixel *i* and seed *j*.
- Geometric lifting method. Compute a standard power diagram in dimension d + d(d+1)/2, intersect with a surface, project. Boissonnat, Wormser & Yvinec (2007)
- Entropic semi-discrete optimal transport.
- Stochastic optimisation. Genevay, Cuturi, Peyré & Bach (2016)

• Boundary method. Dieci & Walsh III (2019)