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Today’s talk

How optimal transport theory can be used to generate geometric
models of the microstructure of steels, foams, concrete, ...




Part |: Background in steel
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e Grains often resemble polyhedra. Under idealised cooling
conditions, grains would form a Voronoi diagram.
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The microstructure of steel

¢ High-performance steels: Grains of different sizes & shapes.

e Grain geometry affects the mechanical properties of steel.

e Goal of Tata Steel: Improve steel grades (alloys) and steel-forming
processes by controlling the size and geometry of the grains.



Multiscale microstructure modelling
Approach: Computational homogenisation

e Geometric modelling: Generate a geometric model (Voronoi
tessellation or Laguerre tessellation) of the steel microstructure.

e Computational plasticity: Assign mechanical propertes to each
grain. Simulate standard mechanical tests (uni-axial load, shear).




Our goal

Generate geometric models of the microstructure of polycrystalline
materials (Laguerre diagrams) with prescribed geometric properties:
® grain size distributions

e gpatial distributions

e aspect ratio distributions




Part Il: Background in semi-discrete OT



Laguerre tessellations

The Laguerre tessellation of 2 ¢ R¢ generated by the weighted points
{(zi,wi)} 11, x; € Q, w; € R, is the partition {L,;}!_; of Q defined by

Li={zeQ:|z—x* —w; < |z — 2> —w; Vj}.
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Laguerre cells are convex polygons in 2D and polyhedra in 3D.
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Semi-discrete optimal transport

e Source measure: Lebesgue measure £4LQ, Q C R?
e Discrete target measure: > | v;0,,, x; € Q, Y, v; = LY(Q)
e Semi-discrete transport problem:
2 d : 2
Q : ) - .
Wy (E : ’Zi:ws’“ partitiorfg}{lflfi}on zl: /U o= zif"de

LU U)=v; Vi

The optimal partition is a
Laguerre tessellation {L;}
with cells of volume {v;}




Part Ill: Main results



Our goal
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Bourne, Kok, Roper & Spanjer (2020), Bourne, Pearce & Roper (2023)
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Controlling the grain size distribution

Question posed to us by Tata Steel: How do you generate a Laguerre
diagram with polyhedra (grains) of given volumes vy, ..., v,?

Solution: Semi-discrete optimal transport

e For any x1,...,x,, solve the semi-discrete transport problem

ws (1, zn:mm)
i=1

If {L;}7_, is the optimal Laguerre tessellation, then £¢(L;) = v;.
¢ \ery fast algorithms (damped Newton method) and software:

Kitagawa, Mérigot & Thibert (2019), A. Gallouét, Mérigot & Thibert (2022),
Lévy, Mohayaee & von Hausegger (2021), Lévy (2015), Mérigot (2011), ...
pysdot (Mérigot & Leclerc), Geogram (Lévy), sdot (Meyron), MATLAB-SDOT
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Controlling the grain size and spatial distribution

Question posed to us by Tata Steel: How do you generate a Laguerre
diagram with polyhedra (grains) of given volumes vy, ..., v,?

Solution: Semi-discrete optimal transport.
e For any z1,...,x,, Solve the semi-discrete transport problem
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Controlling the grain size and spatial distribution

Question posed to us by Tata Steel: How do you generate a Laguerre
diagram with polyhedra (grains) of given volumes vy, ..., v,?

Solution: Semi-discrete optimal transport.
e For any z1,...,x,, Solve the semi-discrete transport problem

Wo (1, z": viégji).
i=1

If {L;}™_, is the optimal Laguerre tessellation, then £¢(L;) = v;.
e Choice of =1, ..., z, gives some control over the spatial distribution.
e Generate ‘regular’ microstructures by solving a quantization problem:

min Wy (1, z”: v¢5Ii>
i=1

{T1,. 0}

Algorithms/convergence: Mérigot, Santambrogio & Sarrazin (2021), B., Kok,
Roper & Spanjer (2020), Xin, Lévy et al. (2016), Mérigot & Mirebeau (2016)



Example

Dual phase microstructure: 30 grains area a, 10 grains area 10a
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Figure: Left: z; drawn at random. Right: Locally-optimal quantizer.
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e Generalised Lloyd’s algorithm. Iteration &:
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e Convergence: Mérigot, Santambrogio & Sarrazin (2021), Bourne,
Kok, Roper & Spanjer (2020)



Quantization problem

n
mig }E(xl,...,mn), E(a:l,...,xn)=W2<1,;vi5xi)

Critical points of E: Centroidal Laguerre tessellations

Generalised Lloyd’s algorithm. lteration &:
- {LE’“)} = optimal partition for OT problem W (1, Z Ui(s‘]:(k)>
i=1 ‘

- 2 = centroid(L{F) Vi
Convergence: Mérigot, Santambrogio & Sarrazin (2021), Bourne,
Kok, Roper & Spanjer (2020)

Non-convexity: Non-convexity is our friend!



Using non-convexity to control spatial distribution

Initial choice of seeds zgo) has a big effect on the pattern:
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Using non-convexity to control spatial distribution

Initial choice of seeds xl(-o) has a big effect on the pattern:




Using non-convexity to control spatial distribution

Initial choice of seeds xﬁo) has a big effect on the pattern:




Optimal transport with periodic quadratic cost

Same method works for periodic Laguerre tessellations (important for
computational homogenisation), where

Lger = {JJ €N: |$ _xiﬁ)er —w; < |x_xj|r2>er - wj V]}

Bourne, Pearce & Roper (2023)
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correct volume and ‘minimum centroid error’.



Fitting volumes and centroids
Question: Given a list of target volumes v4, ..., v, and target
centroids ¢, . .., ¢y, find a Laguerre tessellation {L,}? , with grains of
correct volume and ‘minimum centroid error’.

Notation: The centroid (barycentre) of a grain L, is

1
b(L;) = Ed(Li)/Lixd:v.



Preliminary results: Special case

Theorem (B., Pearce, Roper)

Given a list of target volumes v1, . . ., v, and target centroids
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{L;(X*,w*)}"_, such that £¢(L;) = v; and b(L;) = ¢; for all . Then
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Preliminary results: Special case

Theorem (B., Pearce, Roper)

Given a list of target volumes v1, . . ., v, and target centroids

1, ..., Cn, SUPPOSE there exists a Laguerre tessellation

{L;(X*,w*)}_, such that £¢(L;) = v; and b(L;) = ¢; for all . Then
1. The Laguerre diagram is unique.

(The grains are unique. The seeds can be uniformly translated and
dilated, z; = \z; + t for all 4, without changing the grains L;.)
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Preliminary results: Special case

Theorem (B., Pearce, Roper)

Given a list of target volumes v1, . . ., v, and target centroids

1, ..., Cn, SUPPOSE there exists a Laguerre tessellation

{L;(X*,w*)}_, such that £¢(L;) = v; and b(L;) = ¢; for all . Then
1. The Laguerre diagram is unique.

2. The seeds X* = (z7,...,x}) maximise the concave function
H: (RH" - R,

H(X 7W2< sz - ) —1—21)102 T; — Zvl\mf
2=

H is C' on the set {(z1,...,7,) € RY)" : z; # z; Vi # j} and

0H
al'i

= vi(c; — b(Ly)).

(Mérigot, Santambrogio & Sarrazin (2021))



Preliminary results: General case

Given a list of target volumes v1, ..., v, and target centroids
c1,...,cn, find a Laguerre tessellation {L;}, such that £L4(L;) = v;
for all i and Z |v;(b(L;) — ¢;)|* is minimal.

) o " C ': (95 & X

Left: EBSD image. Right: Fitted diagram. The blue dots are the target
centroids, the red dots are the actual centroids.
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Controlling the grain size and aspect ratio distribution

We can represent anisotropic microstructures by anisotropic
Laguerre diagrams.

0 100 200 300 400

A. Alpers, A. Brieden, P. Gritzmann, A. Lyckegaard, and H.F. Poulsen.
Generalized balanced power diagrams for 3D representations of polycrystals.
Philos. Mag. 95(9): 1016-1028, 2015.



Controlling the grain size and aspect ratio distribution
The anisotropic Laguerre tessellation generated by the weighted
points {(x;, w;, A;)} 1, where z; € Q, w; € R, A; are SPD matrices,
is the partition {L;}, of Q defined by
L;= {:E €N: |x7ml|?4 —w; < |:cij\§‘j — wj Vj}

where | - |4 is the A-norm: |z — ;|3 = (z — z;) - Az — x;).



Controlling the grain size and aspect ratio distribution
The anisotropic Laguerre tessellation generated by the weighted
points {(z;, w;, A;)}I,, where z; € Q, w; € R, A; are SPD matrices,
is the partition {L;}, of Q defined by
L, = {xEQ:|x—xi|?4i —w; < |x—xj|?4j —ijj}

where | - |4 is the A-norm: |z — ;|3 = (z — z;) - Az — x;).

0 100 200 300 400

The A; matrices give some control over the aspect ratio of the cells.
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Controlling the grain size for anisotropic diagrams

Q. Can we choose the generators (z1, w1, A1), ..., (zn, Wy, Ay) SO
that the anisotropic Laguerre cells have desired volumes vy, ...,v,?

A. Yes. Solution(s) using optimal transport theory:
e For any {z;}, {A;}, solve the semi-discrete transport problem

W1 0
i=1

with anisotropic cost c(x, z;) = |z — z4]% .

® The optimal partition {L;}!_, is an anisotropic Laguerre
tessellation and £4(L;) = v; V1.

¢ Implementation: Maximise the concave function £ : R™ — R,

Kw =3 [ (el —wdr Y v
i=1 v ~ilw i=1

where

Li(w)={z€Q: |z -4, —w; < |z —acj|124j —w; Vit



Example

large cells of area 10a (error less than 1%). The large cells have two
different A, (15 of each type):

1 0
Asmall = |:0 1:| y Alarge,l = |:

Dual phase microstructure: 100 cells: 70 small cells of area a, 30

5 0 1 0
0 1:|7 Alarge,2:|: ]

0 5




Fitting anisotropic diagrams to EBSD data

Basic fitting: Take xz;, A;, v; from EBSD data (grain centroids,
ellipsoids, volumes) - solve the semi-discrete OT problem for w;.

Left: EBSD image from Tata Steel.  Right: Anisotropic Laguerre.
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Implementation issues
Question: How can we compute anisotropic diagrams efficiently?

e Pixel method. Compute the “anisotropic distance”
(pi — ;) - Aj(p; — x;) — w; between every pixel < and seed j.

e Geometric lifting method. Compute a standard power diagram in
dimension d + d(d + 1)/2, intersect with a surface, project.
Boissonnat, Wormser & Yvinec (2007)

e Entropic semi-discrete optimal transport.
e Stochastic optimisation. Genevay, Cuturi, Peyré & Bach (2016)
e Boundary method. Dieci & Walsh Il (2019)



