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Regularized Optimal Transport

initial final

Interpolate two probability distributions↔ probability model: Brownian
Motion 3/17
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Solution: Regularized Unbalanced Optimal Transport

initial final

Interpolate positive measures with “vertical motion”↔ probability model:
Branching Brownian Motion 5/17



Today

Goal of this presentation
Show an equivalence between two problems of calculus of variations:

• The dynamical formulation (a.k.a Benamou Brenier formulation) of
regularized unbalanced optimal transport.

• Entropy minimization with respect to the law of branching Brownian
Motion (“Branching Schrödinger problem”).
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Outline

1. The Schrödinger problem

2. The branching Schrödinger problem

7/17



1. The Schrödinger problem

• Léonard (2013): A survey of the Schrödinger problem and some of

its connections with optimal transport;

• Gentil, Léonard, and Ripani (2017): About the analogy between

optimal transport and minimal entropy.



Schrödinger problem and Regularized Optimal Transport

State space Td the d-dimensional torus, α, β ∈ P(Td) and ν > 0.

Space Ω = C([0, 1],Td). Rν ∈ P(Ω)

Wiener measure with diffusivity ν and
X0 ∼ L = dx under Rν .

The Schrödinger problem
Given α, β ∈ P(Td), find P ∈ P(Ω)

which minimizes

H(P|Rν) :=
ˆ
Ω

log
(

dP
dRν (X)

)
dP(X).

such that X0 ∼ α and X1 ∼ β under P.

Regularized Optimal Transport
Look for ρ and v time-dependent
density and velocity field which
minimize

A(ρ, v) =
ˆ 1

0

ˆ
Td

|v(t, x)|2
2

ρ(t, x) dtdx

such that ρ0 = α, ρ1 = β and
∂tρ+ div(ρv) = ν

2
∆ρ

α
β 8/17
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Equivalence between the problems

Both problems are well-posed if H(α|L),H(β|L) < +∞.

From Schrödinger to ROT
Given P ∈ P(Ω) with H(P|Rν) < +∞,
define ρt := LawP(Xt),

v(t, Xt) := lim
h→0,h>0

EP
[
Xt+h − Xt

h

∣∣∣∣ Xt] .
Then (ρ, v) admissible and

νH(α|L) +A(ρ, v) 6 νH(P|Rν).

From ROT to Schrödinger
If (ρ, v) admissible with v
smooth, P the law of the SDE

dXt = v(t, Xt) dt+
√
ν dBt.

Then P admissible and

νH(α|L)+A(ρ, v) = νH(P|Rν).

α
β
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Consequence: equality of the values

Theorem
For any α, β with H(α|L),H(β|L) < +∞, there holds

νH(α|L) + min
ρ,v

{
A(ρ, v) : ∂tρ+ div(ρv) = ν

2
∆ρ, ρ0 = α, ρ1 = β

}
= min

P
{νH(P|Rν) : X0 ∼ α and X1 ∼ β under P} .

Moreover, if (ρ, v) and P optimal then P is the law of the SDE with drift v.

10/17



2. The branching Schrödinger
problem

• Liero, Mielke, and Savaré (2018): Optimal entropy-transport

problems and a new Hellinger–Kantorovich distance between positive

measures;

• Chizat (2017): Unbalanced optimal transport: Models, numerical

methods, applications;

• Kondratyev, Monsaingeon, and Vorotnikov (2016): A new optimal

transport distance on the space of finite Radon measures;

• Baradat and Lavenant (2021): Arxiv 2111.01666.



The Branching Brownian motion

Parameters: diffusivity ν > 0, branching rate λ > 0, law (pk)k=0,1,... ∈ P(N).

Particles diffuse (ν), at tempo-
ral rate λ they “branch” and
have a k offsprings, drawn from
(pk)k=0,1,... ∈ P(N).

At time t, random measure Mt =
∑

X∈{particles alive at time t}
δX.

Description
The Branching Brownian Motion is a probability distribution on
Ω := càdlàg([0, 1],M+(Td)).

Assumptions: 0 < ν, λ < ∞ and
∑

kpk < +∞.
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The Branching Schrödinger problem

A

Mt(A) = 1

EP[Mt] is the deterministic measure EP[Mt](A) = EP[Mt(A)].

R law of the Branching Brownian Motion with parameters ν, λ and (pk).

Branching Schrödinger problem
Given α, β ∈ M+(Td), find P ∈ P(Ω) which minimizes H(P|R) under the
constraints EP[M0] = α and EP[M1] = β.

Remark. Not symmetric with respect to (α, β) ↔ (β, α).

Important remark. Ill-posed problem as the constraints are not closed:

{P : EP[M0] = α and EP[M1] = β}

is not closed for a topology making H(·|R) continuous.
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The Branching Schrödinger problem

A
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The regularized unbalanced optimal transport problem

Ψ : R → [0,+∞] convex function. The field r = r(t, x) is the growth rate.

Regularized

Unbalanced

Optimal Transport
Look for ρ, v

, r

time-dependent density, velocity

and scalar

field which
minimize

A(ρ, v

, r

) =

¨
|v(t, x)|2

2
ρ(t, x) dtdx

+

¨
Ψ(r(t, x))ρ(t, x) dtdx

under the constraint ρ0 = α, ρ1 = β and ∂tρ+ div(ρv) = ν

2
∆ρ

+ rρ

.

α

β

ρt1

ρt2

v(t1, x)

If Ψ grows polyno-
mially at +∞ and
H(β|L) < +∞, then
well posed.
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Equivalence of the values

Choose Ψ depending on λ, ν and (pk) (see after). Write

Ruot(α, β) := min
ρ,v,r

{
A(ρ, v, r) : ∂tρ+∇ · (ρv) = ν

2
∆ρ+ rρ, ρ0 = α, ρ1 = β

}
BrSch(α, β) := inf

P
{νH(P|R) : EP[M0] = α and EP[M1] = β} .

Define L : φ → logER [exp (〈φ,M0〉)] log-Laplace transform of R0. We expect:

νL∗(α) + Ruot(α, β)BrSch(α, β)

Cannot hold for all α, β. (e.g. α = 0)

Theorem (equivalence of the values)
The function (α, β) 7→ νL∗(α) + Ruot(α, β) is the lower semi continuous
envelope of (α, β) 7→ BrSch(α, β) for the topology of weak convergence.

Idea of the proof: duality.
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Equivalence of the competitors

Additional assumption: one finite exponential moment for M0 and (pk).

α

β

v(t, x)

r(t, x)

Intuition: as before v drift,

r =
+∞∑
k=0

(k− 1)λ̃p̃k for modified

branching rate λ̃, modified law
of offsprings (p̃k)k∈N.

From Branching Schrödinger to RUOT
Given P with H(P|R) < +∞ we build
(ρ, v, r) competitor for RUOT with

νL∗(α) +A(ρ, v, r) 6 νH(P|R).

If H(P|R) < +∞ then P is the law of
BBM with random (predictable) space
time dependent drift ṽ, λ̃ and (p̃k)k∈N.

From RUOT to Branching
Schrödinger
Up to smoothing everything
(including α, β) from (ρ, v, r)
admissible we build a BBM with
drift v and λ̃, (p̃k)k∈N depending
on r such that

νL∗(α) +A(ρ, v, r) > νH(P|R).
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Choosing the right growth penalization

Definition (growth penalization)
Given ν, λ and (pk) choose

Ψ(r) = ν inf
λ̃,(p̃k)

{
H(λ̃(p̃k)|λ(pk)) such that

+∞∑
k=0

(k− 1)λ̃p̃k = r
}
.

Equivalently with Φp(X) =
∑
pkXk then Ψ∗(s) = νλ

(
e−s/νΦp(es/ν)− 1

)
.

.
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p0 p2 p3 p4
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(

cosh
[ s
ν

]
− 1

)
,

Ψ convex, minimal for r = 0. r

Ψ(r)
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Given ν, λ and (pk) choose

Ψ(r) = ν inf
λ̃,(p̃k)

{
H(λ̃(p̃k)|λ(pk)) such that

+∞∑
k=0

(k− 1)λ̃p̃k = r
}
.

Equivalently with Φp(X) =
∑
pkXk then Ψ∗(s) = νλ

(
e−s/νΦp(es/ν)− 1

)
.

If pk = 1/(k − 1)2.2, and p0 =

1 −
∑

k≥2 pk (no exponential
moment)

p0 p2 p3 p4

then Ψ(r) = 0 for r ≥ r̄.
r̄

r

Ψ(r)
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Conclusion

What I have not presented:

• Proofs of the equivalence (convex analysis, stochastic analysis).
• Small noise limit ν, λ → 0: partial optimal transport (Ψ(r) = |r|).
• Numerical simulations with the dynamical formulation of RUOT.
• Formal computations for other measure valued processes.

Thank you for your attention
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Other measure valued processes?

Given a process R, need for the computation of ER [exp(〈θ,M1〉)|M0].

Example (Dawson-Watanabe)
If R Dawson-Watanabe superprocess then the associated PDE is

∂tϕ+
1

2
∆ϕ+

1

2
ϕ2 = 0

as
ER [exp(〈ϕ(1, ·),M1〉)|M0] = exp(〈ϕ(0, ·),M0〉).

We expect the value of the Schrödinger problem to coincide with

L∗(α) + min
ρ,r

{¨
r2ρ : ∂tρ =

ν

2
∆ρ+ rρ

}
(that is Ψ quadratic and v = 0).
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One motivation: biology

ρ̂t1

Gene expression space

Idea: use the optimal trans-
port to reconstruct the tem-
poral couplings.
• Schiebinger et al,
Optimal-transport analysis
of single-cell gene
expression identifies
developmental trajectories
in reprogramming (2019).

• Lavenant, Zhang, Kim and
Schiebinger, Towards a
mathematical theory of
trajectory inference (2021).

Use unbalanced optimal
transport to account for cell
division.
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