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Regularized Optimal Transport
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Interpolate two probability distributions < probability model: Brownian
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With bimodal inputs
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Solution: Regularized Unbalanced Optimal Transport

initial final

Jay

Interpolate positive measures with “vertical motion” « probability model:
Branching Brownian Motion 5/17




Goal of this presentation

Show an equivalence between two problems of calculus of variations:

+ The dynamical formulation (a.k.a Benamou Brenier formulation) of
regularized unbalanced optimal transport.

+ Entropy minimization with respect to the law of branching Brownian
Motion (“Branching Schrédinger problem”).
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1. The Schrodinger problem

2. The branching Schrodinger problem
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1. The Schrodinger problem

e Léonard (2013): A survey of the Schrodinger problem and some of
its connections with optimal transport;
e Gentil, Léonard, and Ripani (2017): About the analogy between

optimal transport and minimal entropy.



Schrodinger problem and Regularized Optimal Transport

State space TY the d-dimensional torus, o, 3 € P(T9) and v > 0.
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Schrodinger problem and Regularized Optimal Transport

State space TY the d-dimensional torus, o, 3 € P(T9) and v > 0.

Space 2 = (([0,1],T%). R¥ € P(Q)
Wiener measure with diffusivity » and
Xo ~ L = dx under R”.

The Schrodinger problem

Given o, f € P(TY), find P € P()
which minimizes

H(P|R) ::/ng (dd; (X)) dP(X).

such that X, ~ « and X; ~ S under P.

@ Sample from P
P 8/17




Schrodinger problem and Regularized Optimal Transport

State space TY the d-dimensional torus, o, 3 € P(T9) and v > 0.

Space 2 = (([0,1],T%). R¥ € P(Q)

Wiener measure with diffusivity » and  Regularized Optimal Transport

Xo ~ L = dx under R”. Look for p and v time-dependent
T L i T de‘n:ﬂty and velocity field which
i minimize
Given a, 3 € P(TY), find P € P(Q)
. S 1 2
which minimizes A(p,v) :/ [v(t, )| p(t, x) dtdx
dp | o |
H(PIRY) := /Ql‘)g (dRV (X)> dP(X). such that py = o, p; = 3 and

1%
Op +div(pv) = =A
such that X, ~ aand X; ~ B under P. tP () 5P

Pty 5 8/17




Equivalence between the problems

Both problems are well-posed if H(a|L£), H(B|L£) < +oc.

From Schrodinger to ROT
Given P € P(2) with H(P|RY) < +o0,
define p; := Lawp(X;),
xt] |
Then (p,v) admissible and
vH(a|L) + A(p, V) < vH(P|R).

v(t,X:) = 1 E
(&, ) ha%ﬁgo F

Kiph — Xt
h

«

9/17




Equivalence between the problems

Both problems are well-posed if H(a|L£), H(B|L£) < +oc.

From Schrodinger to ROT
Given P € P(2) with H(P|RY) < +o0,
define p; := Lawp(X;),

From ROT to Schrodinger

If (p,v) admissible with v
smooth, P the law of the SDE

Xt:| 2 dX; = V(t,Xt) dt + \/;dBt
Then P admissible and
vH(a|L)+A(p, V) = vH(PIRY).

v(t,X;) := lim Ep

Xegh — Xt
h—0,h>0

h

Then (p,v) admissible and

vH(a|L) + A(p, v) < vH(PIRY).

«
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Consequence: equality of the values

Theorem

For any a, 8 with H(a|L), H(B|£) < +oo, there holds

v
vH(a|L) + npuvn {A(p7 V) @ Op+div(pv) = §Ap7 pPo =, pp = /3}
= rnPin{uH(P|R”) : Xo ~aand X; ~ S under P}.

Moreover, if (p,v) and P optimal then P is the law of the SDE with drift v.
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2. The branching Schrodinger
problem

e Liero, Mielke, and Savaré (2018): Optimal entropy-transport
problems and a new Hellinger-Kantorovich distance between positive
measures;

e Chizat (2017): Unbalanced optimal transport: Models, numerical
methods, applications;

e Kondratyev, Monsaingeon, and Vorotnikov (2016): A new optimal
transport distance on the space of finite Radon measures;

e Baradat and Lavenant (2021): Arxiv 2111.01666.



The Branching Brownian motion

Particles diffuse (v), at tempo-
ral rate )\ they “branch” and
have a k offsprings, drawn from

(Pr)k=0,1,... € P(N).

1/17



The Branching Brownian motion

Parameters: diffusivity » > 0, branching rate A > 0, law (pg)r—o,1,... € P(N).

Particles diffuse (v), at tempo-
ral rate )\ they “branch” and
have a k offsprings, drawn from

(Pr)k=0,1,... € P(N).

At time t, random measure M; = Z Sx.
Xe{particles alive at time t}
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The Branching Brownian motion

Parameters: diffusivity » > 0, branching rate A > 0, law (pg)r—o,1,... € P(N).

Particles diffuse (v), at tempo-
ral rate )\ they “branch” and
have a k offsprings, drawn from

(Pr)k=0,1,... € P(N).

At time t, random measure M; = Z Sx.

Xe{particles alive at time t}

Description

The Branching Brownian Motion is a probability distribution on
Q := cadlag(]0, 1], M (T9)).

Assumptions: 0 < v, A < coand » _ kpy, < +oc. 17



The Branching Schrodinger problem

Ep[M;] is the deterministic measure Ep[M:](A) = Ep[M:(A)].
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The Branching Schrodinger problem

Ep[M;] is the deterministic measure Ep[M:](A) = Ep[M:(A)].

i

M,(A) =0
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The Branching Schrodinger problem

Ep[M;] is the deterministic measure Ep[M:](A) = Ep[M:(A)].
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The Branching Schrodinger problem

Ep[M;] is the deterministic measure Ep[M:](A) = Ep[M:(A)].

E[M](A) = 4/3
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The Branching Schrodinger problem

Ep[M;] is the deterministic measure Ep[M¢|(A) = Ep[M(A)].

|

E[M](A) = 4/3

R law of the Branching Brownian Motion with parameters v, A and (py).
Branching Schrodinger problem

Given a, 3 € M, (T%), find P € P(Q2) which minimizes H(P|R) under the
constraints Ep[Mo] = a and Ep[M;] = 8.
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The Branching Schrodinger problem

Ep[M;] is the deterministic measure Ep[M¢|(A) = Ep[M(A)].

|

E[M](A) = 4/3

R law of the Branching Brownian Motion with parameters v, A and (py).
Branching Schrodinger problem

Given a, 3 € M, (T%), find P € P(Q2) which minimizes H(P|R) under the
constraints Ep[Mo] = a and Ep[M;] = 8.

Remark. Not symmetric with respect to (a, 3) + (3, @).

12/17



The Branching Schrodinger problem

Ep[M;] is the deterministic measure Ep[M:](A) = Ep[M:(A)].

|

E[M](A) = 4/3

R law of the Branching Brownian Motion with parameters v, A and (py).

Branching Schrodinger problem

Given a, 3 € M, (T%), find P € P(Q2) which minimizes H(P|R) under the
constraints Ep[Mo] = a and Ep[M;] = 8.

Remark. Not symmetric with respect to (a, 3) + (3, @).

Important remark. Ill-posed problem as the constraints are not closed:
{P 3 Ep[Mo] = o and EP[Ml] = 3}

is not closed for a topology making H(:|R) continuous. 2/



The regularized unbalanced optimal transport problem

Regularized Optimal Transport
Look for p,v time-dependent density, velocity field which
minimize

/ |V p(t, x) dtdx

under the constraint py = o, p1 = 8 and dp + div(pv) = %Ap

B
Pty

//

0(t1, )
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The regularized unbalanced optimal transport problem

U : R — [0, +oc] convex function. The field r = r(t, x) is the growth rate.
Regularized Unbalanced Optimal Transport
Look for p, v, r time-dependent density, velocity and scalar field which

minimize
|v
A(p,Vv,r) p(t,x) dtdx + p(t, x) dtdx

under the constraint py = o, p1 = 8 and dp + div(pv) = %Ap -+ rp.

B
Typical & Pty

Pt / /
C= g
D(t1,x)
Creation of mass

@ ~ o with rate (¢, z)
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The regularized unbalanced optimal transport problem

U : R — [0, +oc] convex function. The field r = r(t, x) is the growth rate.
Regularized Unbalanced Optimal Transport

Look for p, v, r time-dependent density, velocity and scalar field which
minimize

A(p,Vv,r) / |V p(t, x) dtdx +// p(t, x) dtdx

under the constraint py = o, p1 = 8 and dp + div(pv) = %Ap -+ rp.

B
Typical & Pty

If ¥ grows polyno-
,)“// mially at +oo and

“ W H(B|L) < oo, then
& Creation of mass We“‘ posed-

@ ~ o with rate (¢, z)
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Equivalence of the values

Choose ¥ depending on ), v and (pi) (see after). Write
Ruot(a, B) := mvirrl {A(p, v,r) @ Opp+ V- (pv) = gAer rp, po =, p1 = /5}
PV,

BrSch(a, 8) := irgf{Z/H(P\R) : Ep[Mg] = aand Ep[M;] = S5}
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Equivalence of the values

Choose ¥ depending on ), v and (pi) (see after). Write
Ruot(a, §) := min {A(p, v,r) s 9p+ V- (pv) = gAp +1p, po =, p1 = /5}
BrSch(a, 5) := irgf{Z/H(P\R) : Ep[Mg] = aand Ep[M;] = S5}
Define L : ¢ — logEg [exp ({¢, Mo))] log-Laplace transform of Ry. We expect:
vL*(a) + Ruot(e, ) = BrSch(a, f)
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Equivalence of the values

Choose ¥ depending on ), v and (pi) (see after). Write
Ruot(a, §) := min {A(p, v,r) s 9p+ V- (pv) = gAp +1p, po =, p1 = /5}
BrSch(a, 5) := irgf{Z/H(P\R) : Ep[Mg] = aand Ep[M;] = S5}
Define L : ¢ — logEg [exp ({¢, Mo))] log-Laplace transform of Ry. We expect:
vL*(a) + Ruot(e, 5) # BrSch(a, f)

Cannot hold for all o, 3. (e.g. o = 0)
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Equivalence of the values

Choose ¥ depending on ), v and (pi) (see after). Write
Ruot(a, B) := mvirrl {A(p, v,r) @ Opp+ V- (pv) = gAer rp, po =, p1 = /5}
A
BrSch(a, 5) := irgf{Z/H(P\R) : Ep[Mg] = aand Ep[M;] = S5}
Define L : ¢ — logEg [exp ({¢, Mo))] log-Laplace transform of Ry. We expect:
vL*(a) + Ruot(e, 5) # BrSch(a, f)

Cannot hold for all o, 3. (e.g. o = 0)

Theorem (equivalence of the values)

The function (a, 8) — vL*(a) 4+ Ruot(a, ) is the lower semi continuous
envelope of (a, 8) — BrSch(a, 3) for the topology of weak convergence.
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Equivalence of the values

Choose ¥ depending on ), v and (pi) (see after). Write
Ruot(a, B) := mvirrl {A(p, v,r) @ Opp+ V- (pv) = gAer rp, po =, p1 = /5}
A
BrSch(a, 5) := irgf{Z/H(P\R) : Ep[Mg] = aand Ep[M;] = S5}
Define L : ¢ — logEg [exp ({¢, Mo))] log-Laplace transform of Ry. We expect:
vL*(a) + Ruot(e, 5) # BrSch(a, f)

Cannot hold for all o, 3. (e.g. o = 0)

Theorem (equivalence of the values)

The function (a, 8) — vL*(a) 4+ Ruot(a, ) is the lower semi continuous
envelope of (a, 8) — BrSch(a, 3) for the topology of weak convergence.

Idea of the proof: duality.
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Equivalence of the competitors

Additional assumption: one finite exponential moment for My and (py).

Intuition: as before v drift,
+oo

r=>Y (k—1)Ap, for modified
k=0

branching rate ), modified law

of offsprings (Pr)ren-
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Equivalence of the competitors

Additional assumption: one finite exponential moment for My and (py).

Intuition: as before v drift,
+oo
r=> (R=1)Ap, for modified
k=0
‘/ ‘ branching rate ), modified law
o of offsprings (Pr)ken-

From Branching Schrodinger to RUOT

Given P with H(P|R) < +oco we build
(p, v, r) competitor for RUOT with

vLl*(a) + A(p, v, r) < vH(P|R).

If H(P|R) < +oo then P is the law of
BBM with random (predictable) space
time dependent drift v, A and (Px)ken-
15/17



Equivalence of the competitors

Additional assumption: one finite exponential moment for My and (py).

Intuition: as before v drift,
+oo
r=> (R=1)Ap, for modified
p k=0 .
‘ branching rate )\, modified law
a : of offsprings (Pr)ren-

From RUOT to Branching
Schrodinger

Up to smoothing everything
(including a, ) from (p, v, r)

From Branching Schrodinger to RUOT

Given P with H(P|R) < +oco we build
(p, v, r) competitor for RUOT with

vL*(e) + Alp, v, 1) < vH(PIR). admissible we build a BBM with
If H(P|R) < +oo then P is the law of drift v and ), (Px)ren depending
BBM with random (predictable) space on r such that

time dependent drift v, A and (pr)ren- L (@) + A(p,v, 1) > VH(P|R).
15/17



Choosing the right growth penalization

Definition (growth penalization)
Given v, X and (pg) choose

4o
U(r) =v inf < H(A(Pr)|A(pr)) such that > (k—1)Ap,=r¢.
X, (Pr) k=0

Equivalently with ®,(X) = > ppX* then U*(s) = v\ (e—S/Vq>p(eS/") _ 1),
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Choosing the right growth penalization

Definition (growth penalization)
Given v, X and (pg) choose

4o
U(r) =v inf < H(A(Pr)|A(pr)) such that > (k—1)Ap,=r¢.
X, (Pr) k=0

Equivalently with ®,(X) = > ppX* then U*(s) = v\ (e—S/Vq>p(eS/") _ 1),

U(r)

|fp() = Pp2 = ]./2 then

Po P2 P3 P4
*(e) — a2 =
U*(s) = \v (cosh [V} 1) ,
¥ convex, minimal for r = 0. r
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Choosing the right growth penalization

Definition (growth penalization)
Given v, X and (pg) choose

4o
U(r) =v inf < H(A(Pr)|A(pr)) such that > (k—1)Ap,=r¢.
X, (Pr) k=0

Equivalently with ®,(X) = > ppX* then U*(s) = v\ (e—S/Vq>p(eS/") _ 1),

¥(r)

If py = 0.95, p; = 0.05

Po P2 P3 Pa

then ¥ minimal for r < 0.

16/17



Choosing the right growth penalization

Definition (growth penalization)
Given v, X and (pg) choose

4o
U(r) =v inf < H(A(Pr)|A(pr)) such that > (k—1)Ap,=r¢.
X, (Pr) k=0

Equivalently with ®,(X) = > ppX* then U*(s) = v\ (e—S/Vq>p(eS/") _ 1),

w(r)

If po = 0.2, py = 0.8 (no
killing allowed),

PR S

Po P2 P3 Pa ]

then ¥(r) = +oo forr <0. r
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Choosing the right growth penalization

Definition (growth penalization)
Given v, X and (pg) choose

4o
U(r) =v inf < H(A(Pr)|A(pr)) such that > (k—1)Ap,=r¢.
X, (Pr) k=0

Equivalently with ®,(X) = > ppX* then U*(s) = v\ (e—s/uq)p(es/,,) B 1).
If pp = 1/(kR—1)*?,and py = W

1 — 3>, Pr (N0 exponential
moment)

Po P2 P3 Pa

then U(r) =0forr>r.
16/17



What | have not presented:

+ Proofs of the equivalence (convex analysis, stochastic analysis).
+ Small noise limit v, A — 0: partial optimal transport (¥(r) = |r|).
+ Numerical simulations with the dynamical formulation of RUOT.
+ Formal computations for other measure valued processes.
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What | have not presented:

+ Proofs of the equivalence (convex analysis, stochastic analysis).
+ Small noise limit v, A — 0: partial optimal transport (¥(r) = |r|).
+ Numerical simulations with the dynamical formulation of RUOT.
+ Formal computations for other measure valued processes.

Thank you for your attention

17117



Other measure valued processes?

Given a process R, need for the computation of Eg [exp((f, M1))| Mo]-



Other measure valued processes?

Given a process R, need for the computation of Eg [exp({8, M1))| Mo].
Example (Dawson-Watanabe)
If R Dawson-Watanabe superprocess then the associated PDE is
1 1
ZA Z4h2 —
0 + 3 o+ 2¢ 0

as
Er [exp({(p(L, -), M1))| Mo] = exp((¢(0; -), Mo))-

We expect the value of the Schrodinger problem to coincide with

—|—m1n{//rp 8tp—Ap+rp}

(that is ¥ quadratic and v = 0).



One motivation: biology
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One motivation: biology

P

Gene expression space

] . .
Reconstructed trajectories

Idea: use the optimal trans-
port to reconstruct the tem-
poral couplings.

* Schiebinger et al,
Optimal-transport analysis
of single-cell gene
expression identifies
developmental trajectories
in reprogramming (2019).

* Lavenant, Zhang, Kim and
Schiebinger, Towards a
mathematical theory of
trajectory inference (2021).
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Optimal-transport analysis
of single-cell gene
expression identifies
developmental trajectories
in reprogramming (2019).

* Lavenant, Zhang, Kim and
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In reality cells divided and die.



One motivation: biology

Idea: use the optimal trans-
port to reconstruct the tem-
poral couplings.

* Schiebinger et al,
Optimal-transport analysis
of single-cell gene
expression identifies
developmental trajectories
in reprogramming (2019).

* Lavenant, Zhang, Kim and

- Schiebinger, Towards a

mathematical theory of

O Branching o Death ) )
trajectory inference (2021).

In reality cells divided and die. Use unbalanced optimal
transport to account for cell
division.
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