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Monge-Kantorovich metrics

Definition (Monge-Kantorovich metrics)

For 1 <p < oo, p, v € Pp(R™) (finite pth moments)

MR (1, v ::( inf / x — y[Pdy(z, )p,
» (1,7) i Rann\ y[Pdry(z,y)

I(p,v) : = {y € P(R™ x R") | left/right marginals = u/v}.
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I(p,v) : = {y € P(R™ x R") | left/right marginals = u/v}.

MK is a metric on P,(R™).

1\/K§n is nice, but expensive to compute.
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Definition (Julien-Peyré-Delon-Bernot, 2011)

For w € S*71, def. R¥ : R” — R by R¥(z) := (z,w).
The sliced Wasserstein distance for p, v € P,(R") is

SW (1, v) := ( MK (Ry s R (v ))”,

o is normalized surface measure.

Definition (Deshpande et. al., 2019)
The max-sliced Wasserstein distance for p, v € Pp(R") is

MW, (p,v) := ess sup, NKE(R%M, RYv).

For pu € Pp(R"), Ry p € Pp(R) is the Radon transform of 4.
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Known properties

Suggested idea: SW,, or MW, which is computationally easier, so
use in place of M(]Sn.
Known:

e SW,, MW, are metrics on P,(R")
o SW, S M(;Ifn,l
M{En < SW,* for compactly supported (Bonnotte, thesis)
° NKEH, SWp, MW, topologically equiv.
o MW; ~MK}" (Bayraktar-Guo, 2021),
MWy ~ MKS" (Paty-Cuturi, 2019)
o SW; % MKR" (Bayraktar-Guo, 2021)

Goal 1 for talk: investigate more (metric) properties.
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Slight generalization

Definition
Let 1 <p<oo, 1< qg< 0.
The sliced Monge-Kantorovich distance for p, v € P,(R") is

MKy q := ||1VK§(R;¢M, R;&V) ||Lq(0')

MK, p = SWp, MKp oo = MW,
Note: if n =1, MK, , = NKE, so assume n > 2.

6/14



Background
0000e0

Properties of sliced Monge-Kantorovich

Theorem (K.-Takatsu)
Forl1<p<oo,1<qg<oo,

o (Pp(R™),MK,,4) is a complete, separable, metric space

7/14



Background
0000e0

Properties of sliced Monge-Kantorovich

Theorem (K.-Takatsu)
Forl1<p<oo,1<qg<oo,
o (Pp(R™),MK,,4) is a complete, separable, metric space
°o MKpq X NKEn' MKy (11, 62) = Cpg NKfn (1, 02) any p, .

7/14



Background
0000e0

Properties of sliced Monge-Kantorovich

Theorem (K.-Takatsu)

Forl1<p<oo,1<qg< o0,
o (Pp(R™), I\/qu) is a complete, separable, metric space
o MK, , < NK s MKp (1, 62) = Cp g M{fn (i, 05) any p, x
o (Pp(R™), I\/KM) is not a geodesic space.

v :[0,1] — X is a geodesic in (X,d) if
d((s),7(t)) = [t = s|d(~(0),~7(1)) all s, ¢ € [0, 1].

(X,d) is a geodesic space if for every z1, z2 € X, there is a
geodesic connecting them.
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Ho - %(561 +5_el)' JIAE %(562 + 5_62)
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Nongeodesic example

Ho = l(561 +0-ey), 1= l(562 +0—c,)
If us is MK, 4 geodesic, must have Ry = I\/K geodesic from
R#Mo to RY 1.

R‘&J e

(84w, (1—t)eq +ten) FO— (w,(1-t)es +ten) )
2

) ’<w,61—62>|<‘<w,€1+62>’,
(6(%(1%)61*f62>25*<w7(1*t)61*f52>)
M

’<w,61 — 62>| > \(w,el +62>’.
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Nongeodesic example

Ho = l(561 +0-ey), 1= l(562 +0—c,)
If us is MK, 4 geodesic, must have Ry = I\/K geodesic from
R#Mo to RY 1.

R‘&J e

) —t)eqttes) TO (w. (1—t)eq +te
(8, (1—t)eq +¢ 2)*‘2 (w,(1—t)e] +t 2>)7 w, e1 — e2)| < |(w, e1 + e2)]

(6(%(1%)61*f62>+5*<w7(17t)61*f52>)
D) )

’<w,61 — 62>| > \(w,el +62>’.

Can show spt iy € ({£(e1 —e2)} N{E(e1 +e2)}) x R*2 =),
contradiction.
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An embedding
@00000

What went wrong

We could not guarantee for each time that w +— I\/K;lf geod. from
R po to Ry iy is in the image of Radon transform.
Idea: replace Radon transform by disintegration.

Theorem (Disintegration of measures)

Letm e P°(Rx S" 1) (me PR xS 1), St marginal is o).
Then for o-a.e. w, there is m* € P(R) s.t.

w +— m“(A) is Borel for any Borel A C R,

/ fdm = / / f(t,w)dm®(t)do(w), any Borel function f.
RxSn—1 sn-1 JR

Write m = m“ ® do
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Disintegrated Monge-Kantorovich

Definition (K.-Takatsu)
Let 1 <p<oo, 1< qg< 0.

The disintegrated Monge-Kantorovich distance for m = m* ® do,
n=n“®do € P, (RxS"1)is
MCpq = ||M<5(m.7“.)||m(a)a

where

PY (R x S"1) = {meMRxSﬂl A >||Lq/p((,}
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Disintegrated Monge-Kantorovich

Definition (K.-Takatsu)
Let 1 <p<oo, 1< qg< 0.

The disintegrated Monge-Kantorovich distance for m = m* ® do,
n=n“®do € P, (RxS"1)is

MCpq = ||M<5(m.7“.)||m(a)a
where

PY(R x S = {m € PR xS | H/R|t|pdm'(t)||m/p(o)}

Can view this as Li(o; (PP(R),I\/KE))
(metric space valued L9 space)
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Properties of disintegrated Monge-Kantorovich
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Properties of disintegrated Monge-Kantorovich

Theorem (K.-Takatsu)
Forl<p<oo, 1<q<oo,
o (P (R xS" 1), MC,,) is a complete, separable (q < c0),
geodesic, metric space
o MCpp = NKg where
d((t1,w1), (tz,ws)) = {|t1 —to|, wy = wo,

o0, else.
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Properties of disintegrated Monge-Kantorovich

Theorem (K.-Takatsu)
Forl1<p<oo,1<qg< oo,

o (P7,(Rx S*1), MC, ) is a complete, separable (g < ),
geodesic, metric space

o MC,, = MKY where

d((t1,w1), (t2,ws)) = {

© [ Ry ®do is an isometric embedding
(Pp(R™), MKy, 4) — (P;‘iq(R x S, MCp )

|t1_t2’7 W1 = W2,

0, else.

Comment: intrinsic distance on embedded (P,(R"), MK, ,,)
induced by MC, , is I\/Kfn (Candau-Tilh, master’s thesis, compact
support case)
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We actually have a dual problem (holds for sliced too).

Theorem (K.-Takatsu)
1<p<q<oo. Then

MCp q(m,n)P =

sup {—/ (Pdm — (Wdn | ¢ € Cy(S™Y),
RxS§n—1 RxSn—1

||C||L(q/p)’(g) <1, &,V e Cp(R x S" 1),
—®(t,w) — ¥(s,w) < |t — s}

A
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Barycenters

We actually have existence of barycenters (also sliced) and duality
for barycenters a la Agueh-Carlier (not for sliced).

Theorem (K.-Takatsu)

1<p<qg<oo, Y A=1X>0mePs (RxS"1).

N
min Z ANiMEC,, o(my, )P =

=1
ol N

sup { Z/Snl Ci/RS,\i,p Ydm?do(w) | Zgigi =0,
o= =1

&i

) n—1 . —_—
Gi € Co(S" ) lGill pearmr oy < 1 7 + [¢[p

€ Co(R x snl)}

where Sy, p§“(s) := sup;cr(—Ailt — s|P — &(t,w)).
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Thank you

Thank you very much!
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