An embedding of sliced optimal transport metrics

Jun Kitagawa¹ joint work with Asuka Takatsu²

¹Department of Mathematics Michigan State University (partially supported by NSF grant DMS-2000128)

> ²Department of Mathematics Tokyo Metropolitan University

> > 2023/03/14

Outline

Background

2 An embedding

Monge-Kantorovich metrics

Definition (Monge-Kantorovich metrics)

For $1 \le p < \infty$, μ , $\nu \in \mathcal{P}_p(\mathbb{R}^n)$ (finite pth moments)

$$\begin{split} \mathbf{M}_p^{\mathbb{R}^n}(\mu,\nu) := \left(\inf_{\gamma \in \Pi(\mu,\nu)} \int_{\mathbb{R}^n \times \mathbb{R}^n} |x-y|^p d\gamma(x,y) \right)^{\frac{1}{p}}, \\ \Pi(\mu,\nu) := \{ \gamma \in \mathcal{P}(\mathbb{R}^n \times \mathbb{R}^n) \mid \mathsf{left/right\ marginals} = \mu/\nu \}. \end{split}$$

 $\mathbf{M}^{\mathbb{R}^n}_p$ is a metric on $\mathcal{P}_p(\mathbb{R}^n)$.

 $\mathrm{MK}_n^{\mathbb{R}^n}$ is nice, but expensive to compute

Monge-Kantorovich metrics

Definition (Monge-Kantorovich metrics)

For $1 \le p < \infty$, μ , $\nu \in \mathcal{P}_p(\mathbb{R}^n)$ (finite pth moments)

$$\begin{split} \mathbf{M}_p^{\mathbb{R}^n}(\mu,\nu) := \left(\inf_{\gamma \in \Pi(\mu,\nu)} \int_{\mathbb{R}^n \times \mathbb{R}^n} |x-y|^p d\gamma(x,y) \right)^{\frac{1}{p}}, \\ \Pi(\mu,\nu) := \{ \gamma \in \mathcal{P}(\mathbb{R}^n \times \mathbb{R}^n) \mid \mathsf{left/right\ marginals} = \mu/\nu \}. \end{split}$$

 $\mathrm{MK}_p^{\mathbb{R}^n}$ is a metric on $\mathcal{P}_p(\mathbb{R}^n)$.

 $\mathbf{MK}_n^{\mathbb{R}^n}$ is nice, but expensive to compute

Monge-Kantorovich metrics

Definition (Monge-Kantorovich metrics)

For $1 \le p < \infty$, μ , $\nu \in \mathcal{P}_p(\mathbb{R}^n)$ (finite pth moments)

$$\begin{split} \mathbf{M}_p^{\mathbb{R}^n}(\mu,\nu) := \left(\inf_{\gamma \in \Pi(\mu,\nu)} \int_{\mathbb{R}^n \times \mathbb{R}^n} |x-y|^p d\gamma(x,y) \right)^{\frac{1}{p}}, \\ \Pi(\mu,\nu) := \{ \gamma \in \mathcal{P}(\mathbb{R}^n \times \mathbb{R}^n) \mid \mathsf{left/right\ marginals} = \mu/\nu \}. \end{split}$$

 $\mathrm{MK}_p^{\mathbb{R}^n}$ is a metric on $\mathcal{P}_p(\mathbb{R}^n)$.

 $\mathbf{M}_n^{\mathbb{R}^n}$ is nice, but expensive to compute.

Idea: 1D OT is super easy to compute

Definition (Julien-Peyré-Delon-Bernot, 2011)

For $\omega \in \mathbb{S}^{n-1}$, def. $R^{\omega} : \mathbb{R}^n \to \mathbb{R}$ by $R^{\omega}(x) := \langle x, \omega \rangle$.

The sliced Wasserstein distance for μ , $\nu \in \mathcal{P}_p(\mathbb{R}^n)$ is

$$SW_p(\mu,\nu) := \left(\int_{\mathbb{S}^{n-1}} \mathrm{MK}_p^{\mathbb{R}} (R_{\#}^{\omega} \mu, R_{\#}^{\omega} \nu)^p d\sigma(\omega) \right)^{\frac{1}{p}},$$

 σ is normalized surface measure.

Definition (Deshpande et. al., 2019)

The max-sliced Wasserstein distance for μ , $\nu \in \mathcal{P}_p(\mathbb{R}^n)$ is

$$MW_p(\mu, \nu) := \operatorname{ess sup}_{\sigma} \operatorname{MK}_p^{\mathbb{R}}(R_{\#}^{\bullet}\mu, R_{\#}^{\bullet}\nu).$$

Idea: 1D OT is super easy to compute

Definition (Julien-Peyré-Delon-Bernot, 2011)

For $\omega \in \mathbb{S}^{n-1}$, def. $R^{\omega} : \mathbb{R}^n \to \mathbb{R}$ by $R^{\omega}(x) := \langle x, \omega \rangle$.

The sliced Wasserstein distance for μ , $\nu \in \mathcal{P}_p(\mathbb{R}^n)$ is

$$SW_p(\mu,\nu) := \left(\int_{\mathbb{S}^{n-1}} \mathrm{MK}_p^{\mathbb{R}} (R_{\#}^{\omega} \mu, R_{\#}^{\omega} \nu)^p d\sigma(\omega) \right)^{\frac{1}{p}},$$

 σ is normalized surface measure.

Definition (Deshpande et. al., 2019)

The max-sliced Wasserstein distance for μ , $\nu \in \mathcal{P}_p(\mathbb{R}^n)$ is

$$MW_p(\mu, \nu) := \operatorname{ess sup}_{\sigma} \operatorname{MK}_p^{\mathbb{R}}(R_{\#}^{\bullet}\mu, R_{\#}^{\bullet}\nu).$$

Idea: 1D OT is super easy to compute

Definition (Julien-Peyré-Delon-Bernot, 2011)

For $\omega \in \mathbb{S}^{n-1}$, def. $R^\omega : \mathbb{R}^n \to \mathbb{R}$ by $R^\omega(x) := \langle x, \omega \rangle$.

The sliced Wasserstein distance for μ , $\nu \in \mathcal{P}_p(\mathbb{R}^n)$ is

$$SW_p(\mu,\nu) := \left(\int_{\mathbb{S}^{n-1}} \mathrm{MK}_p^{\mathbb{R}} (R_{\#}^{\omega} \mu, R_{\#}^{\omega} \nu)^p d\sigma(\omega) \right)^{\frac{1}{p}},$$

 σ is normalized surface measure.

Definition (Deshpande et. al., 2019)

The max-sliced Wasserstein distance for μ , $\nu \in \mathcal{P}_p(\mathbb{R}^n)$ is

$$MW_p(\mu, \nu) := \operatorname{ess sup}_{\sigma} \operatorname{MK}_p^{\mathbb{R}}(R_{\#}^{\bullet}\mu, R_{\#}^{\bullet}\nu).$$

Idea: 1D OT is super easy to compute

Definition (Julien-Peyré-Delon-Bernot, 2011)

For $\omega \in \mathbb{S}^{n-1}$, def. $R^{\omega}: \mathbb{R}^n \to \mathbb{R}$ by $R^{\omega}(x) := \langle x, \omega \rangle$.

The sliced Wasserstein distance for μ , $\nu \in \mathcal{P}_p(\mathbb{R}^n)$ is

$$SW_p(\mu,\nu) := \left(\int_{\mathbb{S}^{n-1}} \mathrm{MK}_p^{\mathbb{R}} (R_{\#}^{\omega} \mu, R_{\#}^{\omega} \nu)^p d\sigma(\omega) \right)^{\frac{1}{p}},$$

 σ is normalized surface measure.

Definition (Deshpande et. al., 2019)

The max-sliced Wasserstein distance for μ , $\nu \in \mathcal{P}_p(\mathbb{R}^n)$ is

$$MW_p(\mu, \nu) := \operatorname{ess\ sup}_{\sigma} \operatorname{MK}_p^{\mathbb{R}}(R_{\#}^{\bullet}\mu, R_{\#}^{\bullet}\nu).$$

Idea: 1D OT is super easy to compute

Definition (Julien-Peyré-Delon-Bernot, 2011)

For $\omega \in \mathbb{S}^{n-1}$, def. $R^{\omega} : \mathbb{R}^n \to \mathbb{R}$ by $R^{\omega}(x) := \langle x, \omega \rangle$.

The sliced Wasserstein distance for μ , $\nu \in \mathcal{P}_p(\mathbb{R}^n)$ is

$$SW_p(\mu,\nu) := \left(\int_{\mathbb{S}^{n-1}} \mathrm{MK}_p^{\mathbb{R}} (R_{\#}^{\omega} \mu, R_{\#}^{\omega} \nu)^p d\sigma(\omega) \right)^{\frac{1}{p}},$$

 σ is normalized surface measure.

Definition (Deshpande et. al., 2019)

The max-sliced Wasserstein distance for μ , $\nu \in \mathcal{P}_p(\mathbb{R}^n)$ is

$$MW_p(\mu, \nu) := \operatorname{ess\ sup}_{\sigma} \operatorname{MK}_p^{\mathbb{R}}(R_{\#}^{\bullet}\mu, R_{\#}^{\bullet}\nu).$$

Suggested idea: SW_p or MW_p which is computationally easier, so use in place of $\operatorname{MK}_p^{\mathbb{R}^n}$.

Known

- ullet SW_p , MW_p are metrics on $\mathcal{P}_p(\mathbb{R}^n)$
- $SW_p \lesssim \mathrm{MK}_p^{\mathbb{R}^n}$,
- $\mathrm{IM}_p^{\mathbb{R}^n} \lesssim SW_p^{n+1}$ for compactly supported (Bonnotte, thesis)
- $\mathbf{MK}_p^{\mathbb{R}^n}$, SW_p , MW_p topologically equiv.
- ullet $MW_1pprox ext{MK}_1^{\mathbb{R}^n}$ (Bayraktar-Guo, 2021)
 - $MW_2 \approx \mathrm{MK}_2^{\mathbb{R}^n}$ (Paty-Cuturi, 2019)
- $SW_1 \not\approx \operatorname{IK}^{\mathbb{R}^n}$ (Bayraktar-Guo, 2021)

Suggested idea: SW_p or MW_p which is computationally easier, so use in place of $\operatorname{MK}_p^{\mathbb{R}^n}$.

Known:

- ullet SW_p , MW_p are metrics on $\mathcal{P}_p(\mathbb{R}^n)$
- $SW_p \lesssim \mathbf{M}_p^{\mathbb{R}^n}$, $\mathbf{M}_p^{\mathbb{R}^n} \lesssim SW_p^{\frac{1}{n+1}}$ for compactly supported (Bonnotte, thesis)
- $\operatorname{MK}_p^{\mathbb{R}^n}$, SW_p , MW_p topologically equiv.
- $MW_1 \approx \mathrm{IM}_1^{\mathbb{R}^n}$ (Bayraktar-Guo, 2021), $MW_2 \approx \mathrm{IM}_2^{\mathbb{R}^n}$ (Paty-Cuturi, 2019)
- $SW_1 \not\approx \operatorname{MK}_1^{\mathbb{R}^n}$ (Bayraktar-Guo, 2021)

Suggested idea: SW_p or MW_p which is computationally easier, so use in place of $\operatorname{KK}_p^{\mathbb{R}^n}$.

Known:

- ullet SW_p , MW_p are metrics on $\mathcal{P}_p(\mathbb{R}^n)$
- $SW_p \lesssim \mathbf{M}_p^{\mathbb{R}^n}$, $\mathbf{M}_p^{\mathbb{R}^n} \lesssim SW_p^{\frac{1}{n+1}}$ for compactly supported (Bonnotte, thesis)
- $\operatorname{MK}_p^{\mathbb{R}^n}$, SW_p , MW_p topologically equiv.
- $MW_1 \approx \mathrm{MK}_1^{\mathbb{R}^n}$ (Bayraktar-Guo, 2021), $MW_2 \approx \mathrm{MK}_2^{\mathbb{R}^n}$ (Paty-Cuturi, 2019)
- $SW_1 \not\approx \operatorname{IM}_1^{\mathbb{R}^n}$ (Bayraktar-Guo, 2021)

Suggested idea: SW_p or MW_p which is computationally easier, so use in place of $\operatorname{KK}_p^{\mathbb{R}^n}$.

Known:

- ullet SW_p , MW_p are metrics on $\mathcal{P}_p(\mathbb{R}^n)$
- $SW_p \lesssim \mathbf{M}_p^{\mathbb{R}^n}$, $\mathbf{M}_p^{\mathbb{R}^n} \lesssim SW_p^{\frac{1}{n+1}}$ for compactly supported (Bonnotte, thesis)
- ullet $\mathrm{MK}_p^{\mathbb{R}^n}$, SW_p , MW_p topologically equiv.
- $MW_1 \approx \mathrm{IM}_1^{\mathbb{R}^n}$ (Bayraktar-Guo, 2021), $MW_2 \approx \mathrm{IM}_2^{\mathbb{R}^n}$ (Paty-Cuturi, 2019)
- $SW_1 \not\approx \mathbf{M}_1^{\mathbb{R}^n}$ (Bayraktar-Guo, 2021)

Suggested idea: SW_p or MW_p which is computationally easier, so use in place of $\operatorname{KK}_p^{\mathbb{R}^n}$.

Known:

- ullet SW_p , MW_p are metrics on $\mathcal{P}_p(\mathbb{R}^n)$
- $SW_p \lesssim \mathbf{M}_p^{\mathbb{R}^n}$, $\mathbf{M}_p^{\mathbb{R}^n} \lesssim SW_p^{\frac{1}{n+1}}$ for compactly supported (Bonnotte, thesis)
- \bullet $\operatorname{MK}_p^{\mathbb{R}^n}$, SW_p , MW_p topologically equiv.
- $MW_1 \approx \operatorname{MK}_1^{\mathbb{R}^n}$ (Bayraktar-Guo, 2021), $MW_2 \approx \operatorname{MK}_2^{\mathbb{R}^n}$ (Paty-Cuturi, 2019)
- $SW_1 \not\approx \mathbf{M}_1^{\mathbb{R}^n}$ (Bayraktar-Guo, 2021)

Suggested idea: SW_p or MW_p which is computationally easier, so use in place of $\operatorname{KK}_p^{\mathbb{R}^n}$.

Known:

- ullet SW_p , MW_p are metrics on $\mathcal{P}_p(\mathbb{R}^n)$
- $SW_p \lesssim \mathbf{M}_p^{\mathbb{R}^n}$, $\mathbf{M}_p^{\mathbb{R}^n} \lesssim SW_p^{\frac{1}{n+1}}$ for compactly supported (Bonnotte, thesis)
- $\operatorname{MK}_p^{\mathbb{R}^n}$, SW_p , MW_p topologically equiv.
- $MW_1 \approx \operatorname{MK}_1^{\mathbb{R}^n}$ (Bayraktar-Guo, 2021), $MW_2 \approx \operatorname{MK}_2^{\mathbb{R}^n}$ (Paty-Cuturi, 2019)
- $SW_1 \not\approx \operatorname{MK}_1^{\mathbb{R}^n}$ (Bayraktar-Guo, 2021)

Suggested idea: SW_p or MW_p which is computationally easier, so use in place of $\operatorname{MK}_p^{\mathbb{R}^n}$.

Known:

- ullet SW_p , MW_p are metrics on $\mathcal{P}_p(\mathbb{R}^n)$
- $SW_p \lesssim \mathbf{M}_p^{\mathbb{R}^n}$, $\mathbf{M}_p^{\mathbb{R}^n} \lesssim SW_p^{\frac{1}{n+1}}$ for compactly supported (Bonnotte, thesis)
- $\operatorname{MK}_p^{\mathbb{R}^n}$, SW_p , MW_p topologically equiv.
- $MW_1 \approx \operatorname{MK}_1^{\mathbb{R}^n}$ (Bayraktar-Guo, 2021), $MW_2 \approx \operatorname{MK}_2^{\mathbb{R}^n}$ (Paty-Cuturi, 2019)
- $SW_1 \not\approx \operatorname{MK}_1^{\mathbb{R}^n}$ (Bayraktar-Guo, 2021)

Slight generalization

Definition

Let $1 \le p < \infty$, $1 \le q \le \infty$.

The sliced Monge-Kantorovich distance for μ , $\nu \in \mathcal{P}_p(\mathbb{R}^n)$ is

$$\mathbf{M}_{p,q} := \|\mathbf{M}_p^{\mathbb{R}}(R_{\#}^{\bullet}\mu, R_{\#}^{\bullet}\nu)\|_{L^q(\sigma)}$$

 $MK_{p,p} = SW_p$, $MK_{p,\infty} = MW_p$.

Note: if n=1, $\mathrm{MK}_{p,q}=\mathrm{MK}_p^\mathbb{R}$, so assume $n\geq 2$

Slight generalization

Definition

Let $1 \le p < \infty$, $1 \le q \le \infty$.

The sliced Monge-Kantorovich distance for μ , $\nu \in \mathcal{P}_p(\mathbb{R}^n)$ is

$$\mathbf{M}_{p,q} := \|\mathbf{M}_p^{\mathbb{R}}(R_{\#}^{\bullet}\mu, R_{\#}^{\bullet}\nu)\|_{L^q(\sigma)}$$

 $MK_{p,p} = SW_p$, $MK_{p,\infty} = MW_p$.

Note: if n=1, $\mathrm{MK}_{p,q}=\mathrm{MK}_p^\mathbb{R}$, so assume $n\geq 2$

Slight generalization

Definition

Let $1 \le p < \infty$, $1 \le q \le \infty$.

The sliced Monge-Kantorovich distance for μ , $\nu \in \mathcal{P}_p(\mathbb{R}^n)$ is

$$\mathbf{M}_{p,q} := \|\mathbf{M}_p^{\mathbb{R}}(R_{\#}^{\bullet}\mu, R_{\#}^{\bullet}\nu)\|_{L^q(\sigma)}$$

 $MK_{p,p} = SW_p$, $MK_{p,\infty} = MW_p$.

Note: if n = 1, $\mathrm{MK}_{p,q} = \mathrm{MK}_p^{\mathbb{R}}$, so assume $n \geq 2$.

Properties of sliced Monge-Kantorovich

Theorem (K.-Takatsu)

For $1 \le p < \infty$, $1 \le q \le \infty$,

- ullet $(\mathcal{P}_p(\mathbb{R}^n), \mathrm{MK}_{p,q})$ is a complete, separable, metric space
- $\operatorname{MK}_{p,q} \lesssim \operatorname{MK}_p^{\mathbb{R}^n}$, $\operatorname{MK}_{p,q}(\mu, \delta_x) = C_{p,q} \operatorname{MK}_p^{\mathbb{R}^n}(\mu, \delta_x)$ any μ , x.
- $(\mathcal{P}_p(\mathbb{R}^n), \mathrm{MK}_{p,q})$ is not a geodesic space.

$$\gamma:[0,1]\to X$$
 is a geodesic in (X,d) if $d(\gamma(s),\gamma(t))=|t-s|d(\gamma(0),\gamma(1))$ all $s,\,t\in[0,1]$.

(X,d) is a geodesic space if for every x_1 , $x_2 \in X$, there is a geodesic connecting them.

Properties of sliced Monge-Kantorovich

Theorem (K.-Takatsu)

For $1 \le p < \infty$, $1 \le q \le \infty$,

- $(\mathcal{P}_p(\mathbb{R}^n), \mathrm{MK}_{p,q})$ is a complete, separable, metric space
- $\mathrm{NK}_{p,q} \lessapprox \mathrm{MK}_p^{\mathbb{R}^n}$, $\mathrm{NK}_{p,q}(\mu,\delta_x) = C_{p,q} \, \mathrm{NK}_p^{\mathbb{R}^n}(\mu,\delta_x)$ any μ , x.
- $(\mathcal{P}_p(\mathbb{R}^n), \mathbf{M}_{p,q})$ is not a geodesic space.

$$\gamma:[0,1]\to X$$
 is a geodesic in (X,d) if $d(\gamma(s),\gamma(t))=|t-s|d(\gamma(0),\gamma(1))$ all $s,\,t\in[0,1]$

(X,d) is a geodesic space if for every x_1 , $x_2 \in X$, there is a geodesic connecting them.

Properties of sliced Monge-Kantorovich

Theorem (K.-Takatsu)

For $1 \le p < \infty$, $1 \le q \le \infty$,

- $(\mathcal{P}_p(\mathbb{R}^n), \mathrm{MK}_{p,q})$ is a complete, separable, metric space
- $\mathrm{NK}_{p,q} \lessapprox \mathrm{MK}_p^{\mathbb{R}^n}$, $\mathrm{NK}_{p,q}(\mu,\delta_x) = C_{p,q} \, \mathrm{NK}_p^{\mathbb{R}^n}(\mu,\delta_x)$ any μ , x.
- $(\mathcal{P}_p(\mathbb{R}^n), \mathrm{MK}_{p,q})$ is not a geodesic space.

$$\gamma:[0,1]\to X$$
 is a geodesic in (X,d) if $d(\gamma(s),\gamma(t))=|t-s|d(\gamma(0),\gamma(1))$ all $s,\,t\in[0,1].$

(X,d) is a geodesic space if for every x_1 , $x_2 \in X$, there is a geodesic connecting them.

$$\mu_0 := \frac{1}{2}(\delta_{e_1} + \delta_{-e_1}), \ \mu_1 := \frac{1}{2}(\delta_{e_2} + \delta_{-e_2})$$
 If μ_t is $\mathcal{M}_{p,q}$ geodesic, must have $R_\#^\omega \mu_t = \mathcal{M}_p^\mathbb{R}$ geodesic

$$R_{\sharp}^{\omega} \mu_{t} = \begin{cases} \frac{\left(\delta\langle \omega, (1-t)e_{1}+te_{2}\rangle+\delta_{-\langle \omega, (1-t)e_{1}+te_{2}\rangle}\right)}{2}, & |\langle \omega, e_{1}-e_{2}\rangle| < |\langle \omega, e_{1}+e_{2}\rangle|, \\ \frac{\left(\delta\langle \omega, (1-t)e_{1}-te_{2}\rangle+\delta_{-\langle \omega, (1-t)e_{1}-te_{2}\rangle}\right)}{2}, & |\langle \omega, e_{1}-e_{2}\rangle| > |\langle \omega, e_{1}+e_{2}\rangle|. \end{cases}$$

Can show spt $\mu_t \in (\{\pm(e_1 - e_2)\} \cap \{\pm(e_1 + e_2)\}) \times \mathbb{R}^{n-2} = \emptyset$ contradiction.

$$\begin{array}{l} \mu_0:=\frac{1}{2}(\delta_{e_1}+\delta_{-e_1})\text{, } \mu_1:=\frac{1}{2}(\delta_{e_2}+\delta_{-e_2})\\ \text{If } \mu_t \text{ is } \mathrm{KK}_{p,q} \text{ geodesic, } \underset{}{\mathsf{must}} \text{ have } R_\#^\omega \mu_t=\mathrm{KK}_p^\mathbb{R} \text{ geodesic from } \\ R_\#^\omega \mu_0 \text{ to } R_\#^\omega \mu_1. \end{array}$$

$$R_{\sharp}^{\omega} \mu_{t} = \begin{cases} \frac{\left(\delta_{\langle \omega, (1-t)e_{1}+te_{2}\rangle}+\delta_{-\langle \omega, (1-t)e_{1}+te_{2}\rangle}\right)}{2}, & |\langle \omega, e_{1}-e_{2}\rangle| < |\langle \omega, e_{1}+e_{2}\rangle|, \\ \frac{\left(\delta_{\langle \omega, (1-t)e_{1}-te_{2}\rangle}+\delta_{-\langle \omega, (1-t)e_{1}-te_{2}\rangle}\right)}{2}, & |\langle \omega, e_{1}-e_{2}\rangle| > |\langle \omega, e_{1}+e_{2}\rangle|. \end{cases}$$

Can show spt $\mu_t \in (\{\pm(e_1 - e_2)\} \cap \{\pm(e_1 + e_2)\}) \times \mathbb{R}^{n-2} = \emptyset$ contradiction.

$$\begin{array}{l} \mu_0:=\frac{1}{2}(\delta_{e_1}+\delta_{-e_1}),\ \mu_1:=\frac{1}{2}(\delta_{e_2}+\delta_{-e_2})\\ \text{If }\mu_t\text{ is }\mathrm{KK}_{p,q}\text{ geodesic, }\underset{}{\mathsf{must}}\text{ have }R_\#^\omega\mu_t=\mathrm{KK}_p^\mathbb{R}\text{ geodesic from }\\ R_\#^\omega\mu_0\text{ to }R_\#^\omega\mu_1. \end{array}$$

$$R_{\sharp}^{\omega} \mu_{t} = \begin{cases} \frac{\left(\delta_{\langle \omega, (1-t)e_{1}+te_{2}\rangle}+\delta_{-\langle \omega, (1-t)e_{1}+te_{2}\rangle}\right)}{2}, & |\langle \omega, e_{1}-e_{2}\rangle| < |\langle \omega, e_{1}+e_{2}\rangle|, \\ \frac{\left(\delta_{\langle \omega, (1-t)e_{1}-te_{2}\rangle}+\delta_{-\langle \omega, (1-t)e_{1}-te_{2}\rangle}\right)}{2}, & |\langle \omega, e_{1}-e_{2}\rangle| > |\langle \omega, e_{1}+e_{2}\rangle|. \end{cases}$$

Can show spt $\mu_t \in (\{\pm(e_1 - e_2)\} \cap \{\pm(e_1 + e_2)\}) \times \mathbb{R}^{n-2} = \emptyset$, contradiction.

$$\begin{array}{l} \mu_0:=\frac{1}{2}(\delta_{e_1}+\delta_{-e_1}),\ \mu_1:=\frac{1}{2}(\delta_{e_2}+\delta_{-e_2})\\ \text{If }\mu_t\text{ is }\mathrm{KK}_{p,q}\text{ geodesic, }\underset{}{\mathsf{must}}\text{ have }R_\#^\omega\mu_t=\mathrm{KK}_p^\mathbb{R}\text{ geodesic from }R_\#^\omega\mu_0\text{ to }R_\#^\omega\mu_1. \end{array}$$

$$\begin{split} R_{\sharp}^{\omega} \mu_t \\ &= \begin{cases} \frac{\left(\delta_{\langle \omega, (1-t)e_1+te_2\rangle} + \delta_{-\langle \omega, (1-t)e_1+te_2\rangle}\right)}{2}, & \left|\langle \omega, e_1 - e_2\rangle\right| < \left|\langle \omega, e_1 + e_2\rangle\right|, \\ \frac{\left(\delta_{\langle \omega, (1-t)e_1-te_2\rangle} + \delta_{-\langle \omega, (1-t)e_1-te_2\rangle}\right)}{2}, & \left|\langle \omega, e_1 - e_2\rangle\right| > \left|\langle \omega, e_1 + e_2\rangle\right|. \end{cases} \end{split}$$

Can show spt $\mu_t \in (\{\pm(e_1 - e_2)\} \cap \{\pm(e_1 + e_2)\}) \times \mathbb{R}^{n-2} = \emptyset$, contradiction.

What went wrong

We could not guarantee for each time that $\omega \mapsto \mathrm{MK}_p^{\mathbb{R}}$ geod. from $R_\#^\omega \mu_0$ to $R_\#^\omega \mu_1$ is in the image of Radon transform.

Idea: replace Radon transform by disintegration

Theorem (Disintegration of measures)

Let $\mathfrak{m} \in \mathcal{P}^{\sigma}(\mathbb{R} \times \mathbb{S}^{n-1})$ ($\mathfrak{m} \in \mathcal{P}(\mathbb{R} \times \mathbb{S}^{n-1})$, \mathbb{S}^{n-1} marginal is σ). Then for σ -a.e. ω , there is $\mathfrak{m}^{\omega} \in \mathcal{P}(\mathbb{R})$ s.t.

$$\omega \mapsto \mathfrak{m}^{\omega}(A)$$
 is Borel for any Borel $A \subset \mathbb{R}$,

$$\int_{\mathbb{R}\times\mathbb{S}^{n-1}}fd\mathfrak{m}=\int_{\mathbb{S}^{n-1}}\int_{\mathbb{R}}f(t,\omega)d\mathfrak{m}^{\omega}(t)d\sigma(\omega), \text{ any Borel function }f(t)=\int_{\mathbb{R}\times\mathbb{S}^{n-1}}fd\mathfrak{m}=\int_{\mathbb{S}^{n-1}}fd\mathfrak{m}=\int_{\mathbb{R}\times\times\mathbb{S}^{n-1}}fd\mathfrak{m}=\int_{\mathbb{R}\times\mathbb{S}^{n-1}}fd\mathfrak{m}=\int_{\mathbb{R}\times\mathbb{S}^{n-1}}fd\mathfrak{m}=\int_{\mathbb{R}\times\times\mathbb{S}^{n-1}}fd\mathfrak{m}=\int_{\mathbb{R}\times\times\mathbb{S}^{n-1}}fd\mathfrak{m}=\int_{\mathbb{R}\times\times\mathbb{S}^{n-1}}fd\mathfrak{m}=\int_{\mathbb{R}\times\times\mathbb{S}^{n-1}}fd\mathfrak{m}=\int_{\mathbb{R}\times\times\mathbb{S}^{n-1}}fd\mathfrak{m}=\int_{\mathbb{R}\times\times\mathbb{S}^{n-1}}fd\mathfrak{m}=\int_{\mathbb{R}\times\times\mathbb{S}^{n-1}}fd\mathfrak{m}=\int_{\mathbb{R}\times\times\mathbb{S}^{n-1}}fd\mathfrak{m}=\int_{\mathbb{R}\times\times\mathbb{S}^{n-1}}fd\mathfrak{m}=\int_{\mathbb{R}\times\times\mathbb{S}^$$

Write $\mathfrak{m} = \mathfrak{m}^{\omega} \otimes d\sigma$

What went wrong

We could not guarantee for each time that $\omega \mapsto \mathbf{M}_p^{\mathbb{R}}$ geod. from $R_{\#}^{\omega}\mu_0$ to $R_{\#}^{\omega}\mu_1$ is in the image of Radon transform. Idea: replace Radon transform by disintegration.

Theorem (Disintegration of measures)

Let $\mathfrak{m} \in \mathcal{P}^{\sigma}(\mathbb{R} \times \mathbb{S}^{n-1})$ ($\mathfrak{m} \in \mathcal{P}(\mathbb{R} \times \mathbb{S}^{n-1})$, \mathbb{S}^{n-1} marginal is σ). Then for σ -a.e. ω , there is $\mathfrak{m}^{\omega} \in \mathcal{P}(\mathbb{R})$ s.t.

$$\omega \mapsto \mathfrak{m}^{\omega}(A)$$
 is Borel for any Borel $A \subset \mathbb{R}$,

$$\int_{\mathbb{R}\times\mathbb{S}^{n-1}}fd\mathfrak{m}=\int_{\mathbb{S}^{n-1}}\int_{\mathbb{R}}f(t,\omega)d\mathfrak{m}^{\omega}(t)d\sigma(\omega), \text{any Borel function }f(t)=\int_{\mathbb{R}\times\mathbb{S}^{n-1}}fd\mathfrak{m}=\int_{\mathbb{S}^{n-1}}fd\mathfrak{m}=\int_{\mathbb{R}\times\times\mathbb{S}^{n-1}}fd\mathfrak{m}=\int_{\mathbb{R}\times\mathbb{S}^{n-1}}fd\mathfrak{m}=\int_{\mathbb{R}\times\mathbb{S}^{n-1}}fd\mathfrak{m}=\int_{\mathbb{R}\times\mathbb{S}^{n-1}}fd\mathfrak{m$$

Write $\mathfrak{m} = \mathfrak{m}^{\omega} \otimes d\sigma$

What went wrong

We could not guarantee for each time that $\omega \mapsto \mathbf{M}_p^{\mathbb{R}}$ geod. from $R_{\#}^{\omega}\mu_0$ to $R_{\#}^{\omega}\mu_1$ is in the image of Radon transform. Idea: replace Radon transform by disintegration.

Theorem (Disintegration of measures)

Let $\mathfrak{m} \in \mathcal{P}^{\sigma}(\mathbb{R} \times \mathbb{S}^{n-1})$ ($\mathfrak{m} \in \mathcal{P}(\mathbb{R} \times \mathbb{S}^{n-1})$, \mathbb{S}^{n-1} marginal is σ). Then for σ -a.e. ω , there is $\mathfrak{m}^{\omega} \in \mathcal{P}(\mathbb{R})$ s.t.

$$\omega\mapsto\mathfrak{m}^\omega(A) \text{ is Borel for any Borel }A\subset\mathbb{R},$$

$$\int_{\mathbb{R}\times\mathbb{S}^{n-1}}fd\mathfrak{m}=\int_{\mathbb{S}^{n-1}}\int_{\mathbb{R}}f(t,\omega)d\mathfrak{m}^\omega(t)d\sigma(\omega), \text{ any Borel function }f.$$

Write
$$\mathfrak{m} = \mathfrak{m}^{\omega} \otimes d\sigma$$

Disintegrated Monge-Kantorovich

Definition (K.-Takatsu)

Let $1 \le p < \infty$, $1 \le q \le \infty$.

The disintegrated Monge-Kantorovich distance for $\mathfrak{m}=\mathfrak{m}^{\omega}\otimes d\sigma$, $\mathfrak{n}=\mathfrak{n}^{\omega}\otimes d\sigma\in\mathcal{P}_{n,q}^{\sigma}(\mathbb{R}\times\mathbb{S}^{n-1})$ is

$$\mathcal{M}_{p,q} := \|\mathcal{M}_p^{\mathbb{R}}(\mathfrak{m}^{\bullet}, \mathfrak{n}^{\bullet})\|_{L^q(\sigma)},$$

where

$$\mathcal{P}^{\sigma}_{p,q}(\mathbb{R}\times\mathbb{S}^{n-1}):=\left\{\mathfrak{m}\in\mathcal{P}^{\sigma}(\mathbb{R}\times\mathbb{S}^{n-1})\mid \|\int_{\mathbb{R}}|t|^{p}d\mathfrak{m}^{\bullet}(t)\|_{L^{q/p}(\sigma)}\right\}$$

Can view this as $L^q(\sigma;(\mathcal{P}_p(\mathbb{R}),\mathbb{M}_p^\mathbb{R}))$ (metric space valued L^q space)

Disintegrated Monge-Kantorovich

Definition (K.-Takatsu)

Let $1 \le p < \infty$, $1 \le q \le \infty$.

The disintegrated Monge-Kantorovich distance for $\mathfrak{m}=\mathfrak{m}^{\omega}\otimes d\sigma$, $\mathfrak{n}=\mathfrak{n}^{\omega}\otimes d\sigma\in\mathcal{P}_{n,q}^{\sigma}(\mathbb{R}\times\mathbb{S}^{n-1})$ is

$$\mathcal{M}_{p,q} := \|\mathcal{M}_p^{\mathbb{R}}(\mathfrak{m}^{\bullet}, \mathfrak{n}^{\bullet})\|_{L^q(\sigma)},$$

where

$$\mathcal{P}^{\sigma}_{p,q}(\mathbb{R}\times\mathbb{S}^{n-1}):=\left\{\mathfrak{m}\in\mathcal{P}^{\sigma}(\mathbb{R}\times\mathbb{S}^{n-1})\mid \|\int_{\mathbb{R}}|t|^{p}d\mathfrak{m}^{\bullet}(t)\|_{L^{q/p}(\sigma)}\right\}$$

Can view this as $L^q(\sigma; (\mathcal{P}_p(\mathbb{R}), \mathbf{M}_p^{\mathbb{R}}))$ (metric space valued L^q space)

Theorem (K.-Takatsu)

For $1 \le p < \infty$, $1 \le q \le \infty$,

- $(\mathcal{P}^{\sigma}_{p,q}(\mathbb{R} \times \mathbb{S}^{n-1}), \mathcal{M}_{p,q})$ is a complete, separable $(q < \infty)$, geodesic, metric space
- $\mathcal{MC}_{p,p} = \mathbf{MK}_p^d$ where $d((t_1, \omega_1), (t_2, \omega_2)) = \begin{cases} |t_1 t_2|, & \omega_1 = \omega_2 \\ \infty, & \textit{else.} \end{cases}$
- $\mu \mapsto R_{\#}^{\omega} \mu \otimes d\sigma$ is an isometric embedding $(\mathcal{P}_p(\mathbb{R}^n), \mathrm{MK}_{p,q}) \hookrightarrow (\mathcal{P}_{p,q}^{\sigma}(\mathbb{R} \times \mathbb{S}^{n-1}), \mathcal{MK}_{p,q})$

Theorem (K.-Takatsu)

For $1 \le p < \infty$, $1 \le q \le \infty$,

- $(\mathcal{P}^{\sigma}_{p,q}(\mathbb{R} \times \mathbb{S}^{n-1}), \mathcal{M}_{p,q})$ is a complete, separable $(q < \infty)$, geodesic, metric space
- ullet $\mathcal{M}_{p,p}=\mathrm{MK}_p^d$ where

$$d((t_1, \omega_1), (t_2, \omega_2)) = \begin{cases} |t_1 - t_2|, & \omega_1 = \omega_2, \\ \infty, & \textit{else}. \end{cases}$$

• $\mu \mapsto R_{\#}^{\omega} \mu \otimes d\sigma$ is an isometric embedding $(\mathcal{P}_p(\mathbb{R}^n), \operatorname{MK}_{p,q}) \hookrightarrow (\mathcal{P}_{p,q}^{\sigma}(\mathbb{R} \times \mathbb{S}^{n-1}), \mathcal{MC}_{p,q})$

Theorem (K.-Takatsu)

For $1 \le p < \infty$, $1 \le q \le \infty$,

- $(\mathcal{P}^{\sigma}_{p,q}(\mathbb{R}\times\mathbb{S}^{n-1}),\mathcal{M}_{p,q})$ is a complete, separable $(q<\infty)$, geodesic, metric space
- ullet $\mathcal{M}_{p,p}=\mathrm{M}_p^d$ where

$$d((t_1, \omega_1), (t_2, \omega_2)) = \begin{cases} |t_1 - t_2|, & \omega_1 = \omega_2, \\ \infty, & \textit{else}. \end{cases}$$

• $\mu \mapsto R_{\#}^{\omega} \mu \otimes d\sigma$ is an isometric embedding $(\mathcal{P}_p(\mathbb{R}^n), \mathrm{MK}_{p,q}) \hookrightarrow (\mathcal{P}_{p,q}^{\sigma}(\mathbb{R} \times \mathbb{S}^{n-1}), \mathcal{MK}_{p,q})$

Theorem (K.-Takatsu)

For $1 \le p < \infty$, $1 \le q \le \infty$,

- $(\mathcal{P}^{\sigma}_{p,q}(\mathbb{R} \times \mathbb{S}^{n-1}), \mathcal{M}_{p,q})$ is a complete, separable $(q < \infty)$, geodesic, metric space
- $\mathcal{M}_{p,p} = \mathbf{M}_p^d$ where $d((t_1, \omega_1), (t_2, \omega_2)) = \begin{cases} |t_1 t_2|, & \omega_1 = \omega_2, \\ \infty, & \textit{else}. \end{cases}$
- $\mu \mapsto R_{\#}^{\omega} \mu \otimes d\sigma$ is an isometric embedding $(\mathcal{P}_p(\mathbb{R}^n), \mathrm{MK}_{p,q}) \hookrightarrow (\mathcal{P}_{p,q}^{\sigma}(\mathbb{R} \times \mathbb{S}^{n-1}), \mathcal{MK}_{p,q})$

Duality

We actually have a dual problem (holds for sliced too).

Theorem (K.-Takatsu)

$$1 \leq p \leq q \leq \infty. \ \, \textit{Then}$$

$$\mathcal{M}_{p,q}(\mathfrak{m},\mathfrak{n})^p =$$

$$\sup \left\{ -\int_{\mathbb{R} \times \mathbb{S}^{n-1}} \zeta \Phi d\mathfrak{m} - \int_{\mathbb{R} \times \mathbb{S}^{n-1}} \zeta \Psi d\mathfrak{n} \mid \zeta \in C_b(\mathbb{S}^{n-1}), \right.$$

$$\|\zeta\|_{L^{(q/p)'}(\sigma)} \leq 1, \ \, \Phi, \Psi \in C_b(\mathbb{R} \times \mathbb{S}^{n-1}), \\ -\Phi(t,\omega) - \Psi(s,\omega) \leq |t-s|^p \}$$

Barycenters

We actually have existence of barycenters (also sliced) and duality for barycenters à la Agueh-Carlier (not for sliced).

Theorem (K.-Takatsu)

$$1 \leq p \leq q \leq \infty, \ \sum \lambda_i = 1, \ \lambda_i \geq 0, \ \mathfrak{m}_i \in \mathcal{P}^{\sigma}_{p,q}(\mathbb{R} \times \mathbb{S}^{n-1}).$$

$$\min_{\mathfrak{n}} \sum_{i=1}^{N} \lambda_i \mathcal{M} \mathcal{K}_{p,q}(\mathfrak{m}_i,\mathfrak{n})^p =$$

$$\sup \left\{ -\sum_{i=1}^{N} \int_{\mathbb{S}^{n-1}} \zeta_i \int_{\mathbb{R}} S_{\lambda_i,p} \xi_i^{\omega} d\mathfrak{m}_i^{\omega} d\sigma(\omega) \mid \sum_{i=1}^{N} \zeta_i \xi_i \equiv 0, \right.$$

$$\zeta_i \in C_b(\mathbb{S}^{n-1}), \|\zeta_i\|_{L^{(q/p)'}(\sigma)} \leq 1, \ \frac{\xi_i}{1+|t|^p} \in C_0(\mathbb{R} \times \mathbb{S}^{n-1}) \right\}$$
 where $S_{\lambda_i,p} \xi^{\omega}(s) := \sup_{t \in \mathbb{R}} (-\lambda_i |t-s|^p - \xi(t,\omega)).$

Thank you

Thank you very much!