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1. Introduction



One exciting motivation/application in computational biology

How to align clouds of points from different spaces?

1. Given a large population of cells.

2. Two or more experiences in which cells are killed (you cannot reuse it).

3. Observe results: collections of points in Rd1 ,Rd2 .

Figure 1: ”Gromov-Wasserstein optimal transport to align single-cell multi-omics

data”, (Demetci et al.)
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Gromov-Wasserstein

Comparing metric-measure spaces

Let X = {(X , d , µ) , (X , d) polish space, µ probability measure}.
How to compare such spaces ?

Isometric mm-spaces: φ : X 7→ Y , φ∗(µ) = ν and φ isometric: φ∗dY = dX .

• Memoli’s proposal: quadratic optimization problem.

• Sturm’s proposal: finding a common embedding in a metric space.
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Two different distances

D2 distance: infimum on the set of embeddings, Sturm, 2006

D2(X ,Y ) := inf
ψ,φ

{inf
π
⟨π, d2

Z (ψ(x), φ(y))⟩ ; (ψ,φ) : (X ,Y ) 7→ Z and π ∈ CµX ,µY } ,

ψ, φ being isometric embeddings.

1. Reformulation on minimising a coupling pseudo-metric on X × Y .

2. Non-convex optimization problem.

X

µ

Y

ν

Z

φ

ψ
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Two different distances

GW2 distance (Memoli): comparison of pairwise distances (distortion

distances)

GW2(X ,Y ) := inf
π
{⟨π(x , y)⊗ π(x ′, y ′), |dX (x , x ′)− dY (y , y ′)|2⟩ ; π ∈ CµX ,µY } .

1. Non-convex optimization problem.

2. Entropic regularization applies directly.

X

µ

Y

ν

=⇒ (X × X , µ⊗ µ) =⇒ (Y × Y , ν ⊗ ν)

GW = infπ̃
∫
|dX − dY |2d π̃

under the non-convex constraint π̃ = π ⊗ π
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Properties of D and GW

1. Same topology (on compact spaces with uniformly bounded diameters).

2. D gives complete metric space, not GW .

3. Both are length spaces. E.g. (X × Y , (td2
Y + (1− t)d2

X )
1/2, π) for GW .

4. GW has non-negative Alexandrov curvature.
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What is this talk about?

Two contributions on the Gromov-Wasserstein problem.

1. (First part) A mathematical study of the structure of the optimizers.

2. (Second part) A generalization relevant in practice to an unbalanced

setting (e.g. the two point clouds do not have the same total mass).

What are the tools for that?

GW is a quadratic optimization problem on probability measures. Its

linearization belongs to optimal transport.

1. Known and new technics in optimal transport.

2. Extension of part of my work on unbalanced optimal transport.
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1. Introduction

1.1. Map solutions of OT



Map solutions of OT Brenier’s theorem

Brenier’s theorem [?]

Let µ, ν ∈ P(Rn) and c(x , y) = |x − y |2. If µ≪ Ln, then there exists a

unique solution to ?? induced by a map T = ∇f , with f convex.

• Recall that linear optimization (whatever the cost) over the simplex =⇒
permutation.

• Interest: structure on the minimizers.

• generalized for Riemannian manifolds X and Y and for other cost

functions c.
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Map solutions of OT Twist condition

Twist condition Gangbo’s PhD, [?, ?]

We say that c satisfies the twist condition if

for all x0 ∈ X , y 7→ ∇xc(x0, y) ∈ Tx0X is injective. (Twist)

Suppose that c satisfies (Twist) and assume that any c-concave function is

differentiable µ-a.e. on its domain (e.g. µ≪ Ln). If µ and ν have finite

transport cost, then ?? admits a unique optimal transport plan π⋆ induced by

a map which is the gradient of a c-convex function f : X → R:

π⋆ = (id, c- expx(∇f ))#µ .

• c-expx(p) is the unique y such that

∇xc(x , y) + p = 0:

c- expx(p) = (∇xc)
−1(x ,−p) .

• usual Riemannian exp when c(x , y) = d(x , y)2/2
X

Y
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Map solutions of OT Twist condition

Twist condition Gangbo’s PhD, [?, ?]

We say that c satisfies the twist condition if

for all x0 ∈ X , y 7→ ∇xc(x0, y) ∈ Tx0X is injective. (Twist)

Suppose that c satisfies (Twist) and assume that any c-concave function is

differentiable µ-a.e. on its domain (e.g. µ≪ Ln). If µ and ν have finite

transport cost, then ?? admits a unique optimal transport plan π⋆ induced by

a map which is the gradient of a c-convex function f : X → R:

π⋆ = (id, c- expx(∇f ))#µ .

• examples: twist

|x − y |2 in Rn ✓

⟨x , y⟩ in Rn ✓

⟨x , y⟩ on Sn−1 ·

• other formulation:

∀y1 ̸= y2, x 7→ c(x , y1)−c(x , y2) has no critical point. X

Y
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Map solutions of OT Subtwist condition

Subtwist condition [?, ?]

We say that c satisfies the subtwist condition if

∀y1 ̸= y2, x 7→ c(x , y1)− c(x , y2) has at most 2 critical points. (Subtwist)

Suppose that c satisfies (Subtwist). Under the same assumptions than before,

?? admits a unique optimal transport plan π⋆ induced by the union of a map

and an anti-map:

π⋆ = (id,G)#µ̄+ (H, id)#(ν − G#µ̄)

for G : X → Y, H : Y → X and 0 ≤ µ̄ ≤ µ s.t. ν − G#µ̄ vanishes on the

range of G .

twist subtwist

⟨x , y⟩ on Sn−1 · ✓

X
Y

10/28



Map solutions of OT m-twist condition

m-twist condition [?]

We say that c satisfies a m-twist condition if

∀x0 ∈ X , y0 ∈ Y, card {y | ∇xc(x0, y) = ∇xc (x0, y0)} ≤ m . (m-twist)

Suppose that c satisfies (m-twist) and is bounded. Under the same

assumptions than before, each optimal plan π⋆ of ?? is supported on the

graphs of k ≤ m measurable maps Ti : X → Y:

π⋆ =
k∑

i=1

αi (id,Ti )# µ ,

in the sense π⋆(S) =
∑k

i=1

∫
X αi (x)1S(x ,Ti (x))dµ for any Borel S ⊂ X ×Y.

twist subtwist 2-twist

1− cos(x − y) on [0, 2π) · ✓ ✓

our cost! in Rn · · ✓

X
Y
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Map solutions of OT Recap

Twistw�
map

X

Y

Subwistw�
map/anti-map

X

Y

2-twistw�
bimap

X

Y

• all assumptions needed to apply them are satisfied when µ and ν have

compact support and µ has a density
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1. Introduction

1.2. Gromov–Wasserstein



Gromov–Wasserstein [?]

Gromov–Wasserstein problem

We consider the following quadratic minimization problem:

inf
π∈Π(µ,ν)

∫∫
X×Y

|cX (x , x ′)− cY(y , y
′)|p dπ(x , y)dπ(x ′, y ′) . (GW)

X

µ

Y

ν

|cX (x , x ′)− cY(y , y
′)|

• quadratic in π +

non-convex =⇒ much

harder than OT

• distance between

mm-spaces,

i.e. GW(X,Y) = 0 iff

X = (X , dq
X , µ) and

Y = (Y, dq
Y , ν) are

strongly isomorphic [?]
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Statement and relaxation

Question

What can be said on the existence of Monge maps for the

Gromov–Wasserstein problem?
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1. Introduction

1.3. Existing results



Context

Let n ≥ d . We consider the GW problem for µ, ν ∈ Rn × Rd in 2 different

settings:

1. the inner product case, where cX = cY = ⟨·, ·⟩:

min
π∈Π(µ,ν)

∫∫
X×Y

∣∣⟨x , x ′⟩ − ⟨y , y ′⟩
∣∣2 dπ(x , y)dπ(x ′, y ′) ,

(GW inner prod)

• e.g. on a d-dimensional sphere Sd−1

2. the quadratic case, where cX = cY = | · |2:

min
π∈Π(µ,ν)

∫∫
X×Y

∣∣∣|x − x ′|2 − |y − y ′|2
∣∣∣2 dπ(x , y) dπ(x ′, y ′) ,

(GW quadratic)

• standard choice for cX and cY

→ both studied in the literature [?, ?]

In the following, n = d .
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Existing results

1. the inner product case, where cX = cY = ⟨·, ·⟩:

[?]

Let µ, ν ∈ P(Rn) of finite second order moment with µ≪ Ln. Suppose that

there exists a solution π⋆ such that M⋆=
∫
y ⊗ x dπ⋆(x , y) is of full rank.

Then there exists an optimal map T = ∇f ◦M⋆ with f : Rn → R convex.

2. the quadratic case, where cX = cY = | · |2:

[?]

Let µ, ν ∈ P(Rn) with density, rotationally invariant around their barycenter.

Then optimal transport plans are induced by a map which is the monotone

increasing rearrangement between the radial distributions of µ and ν.

[?]

Let µ, ν ∈ P(Rn) with compact support. Assume that µ≪ Ln and that both

µ and ν are centered. Suppose that there exists π⋆ such that

M⋆=
∫
y ⊗ x dπ⋆(x , y) is of full rank and that there exists a differentiable

convex F : R → R such that |T (x)|22 = F ′(|x |22), then there exists an optimal

map T = ∇f ◦M⋆ with f convex.
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Contributions

Let µ, ν ∈ P(Rn) with compact supports. Suppose µ≪ Ln.

1. Theorem: The (GW inner prod) problem admits a map as a solution.

2. Theorem: The (GW quadratic) problem either admits a map, a bimap or

a map/anti-map as a solution.

3. Conjecture: The second claim is tight: there exists cases where optimal

solutions of (GW quadratic) are not maps.

Bonus: complementary study of (GW quadratic) in dimension one.
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2. Monge maps for GW



Preliminary: bilinear relaxation

Denote (GW) = minπ F (π, π), F bilinear.

Possible relaxation: (GW) ≥ minπ,γ F (π, γ) with π, γ ∈ Π(µ, ν).

Tightness

If cY and cX are both conditionally positive (or both conditionally negative),

then the relaxation of GW2
2 is tight.

If (π⋆, γ⋆) minimizer of relaxation, then (π⋆, π⋆) and (γ⋆, γ⋆) also.

Definition

A function cX : X × X → R is a conditionally negative kernel if for every

n ≥ 1, x1, . . . , xn ∈ X and every α1, . . . , αn such that
∑

i αi = 0 then∑
ij αiαjcX (xi , xj).

Proof.

Problem is maximization of a positive quadratic form + elementary

computation.

Examples: inner product cost, quadratic cost.
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Linearization

First-order optimality condition Linearization is an OT problem.

• (GW) = minπ F (π, π) with F symmetric bilinear

• π⋆ minimizes (GW) =⇒ minimizes π 7→ 2F (π, π⋆):

min
π∈Π(µ,ν)

∫
Cπ⋆(x , y) dπ(x , y), with Cπ⋆(x , y) =

∫
|cX (x , x ′)−cY(y , y

′)|p dπ⋆

I will prove something on one of the minimizers of the linearization.

Tightness of relaxation implies these are also minimizers of GW.

• twist conditions for our linearized costs? ⇒ not always, need something a

bit more general.
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2. Monge maps for GW

2.1. A key lemma



A key lemma Intuition

“Let µ, ν ∈ P(E).

If we can send µ and ν in a space B by a function φ, s.t.

c(x , y) = c̃(φ(x), φ(y)) for all x , y ∈ E

with c̃ a twisted cost on B, then we can construct an optimal map between µ

and ν.”

B

E

µ

ν

µu

νtB (u)

φ
φ

tB

Tu

u
tB(u)
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A key lemma Statement

Theorem: existence of a Monge map, inner product cost

Let E0 be a measurable space and B0 and F be complete Riemannian

manifolds. Let µ, ν ∈ P(E0) with compact support. Assume that there exists

a set E ⊂ E0 s.t. µ(E) = 1 and that there exists a measurable map

Φ : E → B0 × F that is injective and whose inverse on its image is measurable

as well. Let φ ≜ pB ◦ Φ : E → B0. Let c : E0 × E0 → R and suppose that

there exists a twisted c̃ : B0 × B0 → R s.t.

c(x , y) = c̃(φ(x), φ(y)) for all x , y ∈ E0 .

Assume that φ#µ≪ LB0 and let thus tB denote the unique Monge map

between φ#µ and φ#ν for this cost. Suppose that there exists a

disintegration ((Φ#µ)u)u of Φ#µ by pB s.t. for φ#µ-a.e. u, (Φ#µ)u ≪ volF .

Then there exists an optimal map T between µ and ν for the cost c that can

be decomposed as

Φ ◦ T ◦ Φ−1(u, v) = (tB(u), tF (u, v)) =
(
c̃- expu(∇f (u))︸ ︷︷ ︸

∈ B

, expv (∇gu(v))︸ ︷︷ ︸
∈ fiber

)
,

with f : B0 → R c̃-convex and gu : F → R d2
F/2-convex for φ#µ-a.e. u. 21/28



A key lemma The proof

B

E

µ

ν

µu

νtB (u)

φ
φ

tB

Tu

u
tB(u)

1. transport in B: c̃ satisfies (Twist) on B;

2. transport the fibers: choose a map for each couple of fibers (µu, νtB (u))

3. is T (u, x) = Tu(x) measurable? need theorem! adaptation of [?] to the

manifold setting

Take-home message: c(x , y) = c̃(φ(x), φ(y)) with c̃ twisted =⇒ map
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2. Monge maps for GW

2.2. Application: inner product cost



Inner product cost Proof

Let’s work on (GW inner prod):

min
π∈Π(µ,ν)

∫∫ ∣∣⟨x , x ′⟩ − ⟨y , y ′⟩
∣∣2 dπ(x , y)dπ(x ′, y ′) (GW inner prod)

⇐⇒ min
π∈Π(µ,ν)

∫∫
−⟨x , x ′⟩⟨y , y ′⟩dπ(x , y)dπ(x ′, y ′)

=⇒ OT problem with

c(x , y) =−
∫
⟨x , x ′⟩⟨y , y ′⟩dπ⋆(x ′, y ′) = · · · =−⟨M⋆x , y⟩

where M⋆ ≜
∫

y ′x ′⊤ dπ⋆(x ′, y ′) ∈ Rn×n

rkM⋆ = n ≤ n − 1

twist ✓ ·
subtwist ✓ ·
m-twist, m ≥ 2 ✓ ·
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Inner product cost Proof

1. a simplification: up to SVD, suppose M⋆ is a diagonal matrix of singular

values:

M⋆ =

 σ1
·
σh

0
·
0


2. rephrase the cost:

c(x , y) = −⟨M⋆x , y⟩

= −
h∑

i=1

σixiyi

≜ c̃(p(x), p(y)) with p the orthogonal projection on Rh .

3. apply key lemma!
• B is Rh

• fibers are Rn−h

• c̃ is twisted on Rh

⇒ optimal map + structure!

for x = (u, v) ∈ Rh × Rn−h, T (u, v) = (∇f ◦M⋆(u),∇gu(v)).
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2. Monge maps for GW

2.3. Application: quadratic cost



Quadratic cost Proof

Similarly, we work on (GW quadratic) and relax to a classical OT problem with

c(x , y) = −|x |2|y |2 − 4⟨M⋆x , y⟩ .

rkM⋆ = n = n − 1 ≤ n − 2

twist · · ·
subtwist ✓ · ·
2-twist ✓ ✓ ·

w� w� w�
map/anti-map and bimap bimap ...
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Quadratic cost Theorem

Theorem: quadratic cost

Let µ, ν ∈ P(Rn) of compact support. Suppose that µ has a density. Let π⋆

be an optimal plan and M⋆ ≜
∫
y ′x ′⊤ dπ⋆(x ′, y ′). Then:

✓ if rkM⋆ = n, there is an optimal map/anti-map,

✓ if rkM⋆ = n − 1, there is an optimal bimap,

(!!) if rkM⋆ ≤ n − 2, there is an optimal map!
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Quadratic cost Proof (rank ≤ n − 2)

1. a simplification: up to SVD, M⋆ is diagonal:

M⋆ =

 σ1
·
σh

0
·
0

 . We note x = (x1, . . . , xh︸ ︷︷ ︸
xH

, xh+1, . . . , xn︸ ︷︷ ︸
x⊥

).

2. rephrase the cost:

−c(x , y) = |x |2|y |2 + 4⟨M⋆x , y⟩

= |xH |2|yH |2 + |xH |2|y⊥|2 + |x⊥|2|yH |2 + |x⊥|2|y⊥|2 + 4⟨M̃xH , yH⟩

= |xH |2|yH |2 + |xH |2n(y) + n(x)|yH |2 + n(x)n(y) + 4⟨M̃xH , yH⟩

≜ −c̃(φ(x), φ(y)) ,

with n : x 7→ |x⊥|2 and φ : x 7→ (xH , |x⊥|2).
3. apply key lemma!

• B is Rh × R+

• the fibers are spheres Sn−h−1

• c̃ is twisted on Rh × R+

⇒ optimal map + structure!

for x ≈ (u, v) ∈ Rh×R+×Sn−h−1, T (u, v) = (c̃- expu(∇f (u)), expv (∇gu(v))) .
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3. Summary & discussion



Summary & discussion

Contributions

1. Thm: always a map for (GW inner prod)

2. Thm: a map, bimap or map/anti-map for (GW quadratic)

3. Numerical Conj: this second claim is tight

4. (Thm: monotone rearrangement optimal for (GW quadratic) between

measures composed of two distant parts): global dominates the local.

Some questions:

• quadratic cost:

• better understanding of the 1d case.

• A (motivated) cost with tractable GW and structured maps?
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