On the existence of Monge maps for the Gromov–Wasserstein problem

Joint work with T. DUMONT (Mines Paristech/MVA), T. LACOMBE (LIGM).

François-Xavier $\rm VIALARD$ (LIGM - Univ. Gustave Eiffel) March 14th, 2023

École de physique des Houches

1. Introduction

How to align clouds of points from different spaces?

- 1. Given a large population of cells.
- 2. Two or more experiences in which cells are killed (you cannot reuse it).
- 3. Observe results: collections of points in $\mathbb{R}^{d_1}, \mathbb{R}^{d_2}$.

Figure 1: "Gromov-Wasserstein optimal transport to align single-cell multi-omics data", (Demetci et al.)

Comparing metric-measure spaces

Let $\mathcal{X} = \{(X, d, \mu), (X, d) \text{ polish space}, \mu \text{ probability measure}\}.$ How to compare such spaces ? Isometric mm-spaces: $\varphi : X \mapsto Y$, $\varphi_*(\mu) = \nu$ and φ isometric: $\varphi^* d_Y = d_X$.

- Memoli's proposal: quadratic optimization problem.
- Sturm's proposal: finding a common embedding in a metric space.

Two different distances

 D^2 distance: infimum on the set of embeddings, Sturm, 2006

 $D^2(X,Y) := \inf_{\psi,\varphi} \{\inf_{\pi} \langle \pi, d_Z^2(\psi(x),\varphi(y)) \rangle \, ; \, (\psi,\varphi) : (X,Y) \mapsto Z \text{ and } \pi \in C_{\mu_X,\mu_Y} \} \, ,$

- ψ, φ being isometric embeddings.
- 1. Reformulation on minimising a coupling pseudo-metric on $X \times Y$.
- 2. Non-convex optimization problem.

Two different distances

 GW^2 distance (Memoli): comparison of pairwise distances (distortion distances)

$$\mathsf{GW}^2(X,Y) := \inf_{\pi} \{ \langle \pi(x,y) \otimes \pi(x',y'), | d_X(x,x') - d_Y(y,y') |^2 \rangle \, ; \, \pi \in C_{\mu_X,\mu_Y} \} \, .$$

- 1. Non-convex optimization problem.
- 2. Entropic regularization applies directly.

- 1. Same topology (on compact spaces with uniformly bounded diameters).
- 2. D gives complete metric space, not GW.
- 3. Both are length spaces. E.g. $(X \times Y, (td_Y^2 + (1-t)d_X^2)^{1/2}, \pi)$ for GW.
- 4. GW has non-negative Alexandrov curvature.

Two contributions on the Gromov-Wasserstein problem.

- 1. (First part) A mathematical study of the structure of the optimizers.
- (Second part) A generalization relevant in practice to an unbalanced setting (e.g. the two point clouds do not have the same total mass).

What are the tools for that?

GW is a quadratic optimization problem on probability measures. Its linearization belongs to optimal transport.

- 1. Known and new technics in optimal transport.
- 2. Extension of part of my work on unbalanced optimal transport.

1. Introduction

1.1. Map solutions of OT

Brenier's theorem [?]

Let $\mu, \nu \in \mathcal{P}(\mathbb{R}^n)$ and $c(x, y) = |x - y|^2$. If $\mu \ll \mathcal{L}^n$, then there exists a unique solution to ?? induced by a map $T = \nabla f$, with f convex.

- Recall that linear optimization (whatever the cost) over the simplex permutation.
- Interest: structure on the minimizers.
- generalized for Riemannian manifolds ${\mathcal X}$ and ${\mathcal Y}$ and for other cost functions c.

Twist condition Gangbo's PhD, [?, ?]

We say that c satisfies the twist condition if

for all
$$x_0 \in \mathcal{X}$$
, $y \mapsto \nabla_x c(x_0, y) \in T_{x_0} \mathcal{X}$ is injective. (Twist)

Suppose that *c* satisfies (Twist) and assume that any *c*-concave function is differentiable μ -a.e. on its domain (e.g. $\mu \ll \mathcal{L}^n$). If μ and ν have finite transport cost, *then* ?? admits a *unique optimal transport plan* π^* *induced by a* map which is the gradient of a *c*-convex function $f : \mathcal{X} \to \mathbb{R}$:

$$\pi^{\star} = (\mathsf{id}, c\operatorname{-} \exp_{\times}(\nabla f))_{\#}\mu.$$

• $c - \exp_x(p)$ is the unique y such that $\nabla_x c(x, y) + p = 0$:

$$c\operatorname{-exp}_{x}(p) = (\nabla_{x}c)^{-1}(x,-p).$$

• usual Riemannian exp when $c(x, y) = d(x, y)^2/2$

Twist condition Gangbo's PhD, [?, ?]

We say that c satisfies the twist condition if

$$\text{for all } x_0 \in \mathcal{X}, \quad y \mapsto \nabla_x c(x_0, y) \in \mathcal{T}_{x_0} \mathcal{X} \text{ is injective.} \tag{Twist}$$

Suppose that *c* satisfies (Twist) and assume that any *c*-concave function is differentiable μ -a.e. on its domain (e.g. $\mu \ll \mathcal{L}^n$). If μ and ν have finite transport cost, *then* ?? admits a *unique optimal transport plan* π^* *induced by a* map which is the gradient of a *c*-convex function $f : \mathcal{X} \to \mathbb{R}$:

$$\pi^{\star} = (\mathsf{id}, c\operatorname{-} \exp_{\mathsf{x}}(\nabla f))_{\#}\mu.$$

- examples: twist $\begin{array}{c|c} |x - y|^2 & \text{in } \mathbb{R}^n & \checkmark \\ \langle x, y \rangle & \text{in } \mathbb{R}^n & \checkmark \\ \langle x, y \rangle & \text{on } \mathbb{S}^{n-1} & \cdot \end{array}$
- other formulation:

 $\forall y_1 \neq y_2, x \mapsto c(x, y_1) - c(x, y_2)$ has no critical point.

Subtwist condition [?, ?]

We say that c satisfies the subtwist condition if

 $\forall y_1 \neq y_2, x \mapsto c(x, y_1) - c(x, y_2)$ has at most 2 critical points. (Subtwist)

Suppose that *c* satisfies (Subtwist). Under the same assumptions than before, **??** admits a unique optimal transport plan π^* induced by the **union of a map** and an anti-map:

$$\pi^{\star} = (\mathsf{id}, G)_{\#}\bar{\mu} + (H, \mathsf{id})_{\#}(\nu - G_{\#}\bar{\mu})$$

for $G : \mathcal{X} \to \mathcal{Y}$, $H : \mathcal{Y} \to \mathcal{X}$ and $0 \leq \overline{\mu} \leq \mu$ s.t. $\nu - G_{\#}\overline{\mu}$ vanishes on the range of G.

		twist	subtwist
$\langle x, y \rangle$	on \mathbb{S}^{n-1}	•	\checkmark

m-twist condition [?]

We say that c satisfies a m-twist condition if

$$\forall x_0 \in \mathcal{X}, y_0 \in \mathcal{Y}, \quad \mathsf{card} \left\{ y \mid \nabla_x c(x_0, y) = \nabla_x c\left(x_0, y_0\right) \right\} \leq m \,. \qquad (\textit{m-twist})$$

Suppose that c satisfies (*m*-twist) and is *bounded*. Under the *same assumptions than before*, each optimal plan π^* of ?? is supported on the graphs of $k \leq m$ measurable maps $T_i : \mathcal{X} \to \mathcal{Y}$:

$$\pi^{\star} = \sum_{i=1}^{k} \alpha_i \left(\mathsf{id}, \, T_i \right)_{\#} \mu \,,$$

in the sense $\pi^*(S) = \sum_{i=1}^k \int_{\mathcal{X}} \alpha_i(x) \mathbb{1}_S(x, T_i(x)) d\mu$ for any Borel $S \subset \mathcal{X} \times \mathcal{Y}$.

Map solutions of OT Recap

• all assumptions needed to apply them are satisfied when μ and ν have compact support and μ has a density

1. Introduction

1.2. Gromov-Wasserstein

Gromov–Wasserstein [?]

Gromov-Wasserstein problem

We consider the following quadratic minimization problem:

$$\inf_{\pi \in \Pi(\mu,\nu)} \iint_{\mathcal{X} \times \mathcal{Y}} |c_{\mathcal{X}}(x,x') - c_{\mathcal{Y}}(y,y')|^{p} d\pi(x,y) d\pi(x',y').$$
(GW)

- quadratic in π +
 - non-convex \implies much harder than OT
- distance between mm-spaces, *i.e.* GW(\mathbb{X}, \mathbb{Y}) = 0 iff $\mathbb{X} = (\mathcal{X}, d_{\mathcal{X}}^{q}, \mu)$ and $\mathbb{Y} = (\mathcal{Y}, d_{\mathcal{Y}}^{q}, \nu)$ are strongly isomorphic [?]

Question

What can be said on the existence of Monge maps for the Gromov–Wasserstein problem?

1. Introduction

1.3. Existing results

Context

Let $n \geq d$. We consider the GW problem for $\mu, \nu \in \mathbb{R}^n \times \mathbb{R}^d$ in 2 different settings:

1. the *inner product case*, where $c_{\mathcal{X}} = c_{\mathcal{Y}} = \langle \cdot, \cdot \rangle$:

$$\min_{\pi \in \Pi(\mu,\nu)} \iint_{\mathcal{X} \times \mathcal{Y}} |\langle x, x' \rangle - \langle y, y' \rangle|^2 d\pi(x,y) d\pi(x',y'),$$
(GW inner prod)

- e.g. on a d-dimensional sphere \mathbb{S}^{d-1}
- 2. the *quadratic case*, where $c_{\mathcal{X}} = c_{\mathcal{Y}} = |\cdot|^2$:

$$\min_{\pi \in \Pi(\mu,\nu)} \iint_{\mathcal{X} \times \mathcal{Y}} \left| |x - x'|^2 - |y - y'|^2 \right|^2 \, \mathrm{d}\pi(x,y) \, \mathrm{d}\pi(x',y') \,,$$
(GW quadratic)

- standard choice for c_X and c_Y
- \rightarrow both studied in the literature [?, ?]

In the following, n = d.

Existing results

1. the *inner product case*, where $c_{\mathcal{X}} = c_{\mathcal{Y}} = \langle \cdot, \cdot \rangle$:

[?]

Let $\mu, \nu \in \mathcal{P}(\mathbb{R}^n)$ of finite second order moment with $\mu \ll \mathcal{L}^n$. Suppose that there exists a solution π^* such that $M^* = \int y \otimes x \, d\pi^*(x, y)$ is of *full rank*. Then there exists an optimal map $T = \nabla f \circ M^*$ with $f : \mathbb{R}^n \to \mathbb{R}$ convex.

2. the *quadratic case*, where $c_{\mathcal{X}} = c_{\mathcal{Y}} = |\cdot|^2$:

[?]

Let $\mu, \nu \in \mathcal{P}(\mathbb{R}^n)$ with *density, rotationally invariant* around their barycenter. Then optimal transport plans are *induced by a map* which is the monotone increasing rearrangement between the radial distributions of μ and ν .

[?]

Let $\mu, \nu \in \mathcal{P}(\mathbb{R}^n)$ with compact support. Assume that $\mu \ll \mathcal{L}^n$ and that both μ and ν are centered. *Suppose* that there exists π^* such that $M^* = \int y \otimes x \, d\pi^*(x, y)$ is of *full rank* and that *there exists a differentiable convex* $F \colon \mathbb{R} \to \mathbb{R}$ such that $|T(x)|_2^2 = F'(|x|_2^2)$, then there exists an optimal map $T = \nabla f \circ M^*$ with f convex.

Let $\mu, \nu \in \mathcal{P}(\mathbb{R}^n)$ with compact supports. Suppose $\mu \ll \mathcal{L}^n$.

- 1. Theorem: The (GW inner prod) problem admits a *map* as a solution.
- Theorem: The (GW quadratic) problem either admits a *map*, a *bimap* or a *map/anti-map* as a solution.
- 3. **Conjecture:** The second claim is *tight*: there exists cases where optimal solutions of (GW quadratic) are *not maps*.

Bonus: complementary study of (GW quadratic) in dimension one.

2. Monge maps for GW

Preliminary: bilinear relaxation

Denote (GW) = min_{π} F(π , π), F bilinear.

Possible relaxation: (GW) $\geq \min_{\pi,\gamma} F(\pi,\gamma)$ with $\pi,\gamma \in \Pi(\mu,\nu)$.

Tightness

If $c_{\mathcal{Y}}$ and $c_{\mathcal{X}}$ are both conditionally positive (or both conditionally negative), then the relaxation of GW_2^2 is tight.

If $(\pi_{\star}, \gamma_{\star})$ minimizer of relaxation, then $(\pi_{\star}, \pi_{\star})$ and $(\gamma_{\star}, \gamma_{\star})$ also.

Definition

A function $c_{\mathcal{X}} : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a conditionally negative kernel if for every $n \ge 1, x_1, \ldots, x_n \in \mathcal{X}$ and every $\alpha_1, \ldots, \alpha_n$ such that $\sum_i \alpha_i = 0$ then $\sum_{ij} \alpha_i \alpha_j c_{\mathcal{X}}(x_i, x_j)$.

Proof.

Problem is *maximization* of a positive quadratic form + elementary computation.

Examples: inner product cost, quadratic cost.

First-order optimality condition Linearization is an OT problem.

- (GW) = min $_{\pi} F(\pi, \pi)$ with F symmetric bilinear
- π^* minimizes (GW) \implies minimizes $\pi \mapsto 2F(\pi, \pi^*)$:

$$\min_{\pi\in\Pi(\mu,\nu)}\int C_{\pi^{\star}}(x,y)\,\mathrm{d}\pi(x,y),\quad\text{ with }C_{\pi^{\star}}(x,y)=\int |c_{\mathcal{X}}(x,x')-c_{\mathcal{Y}}(y,y')|^p\,\mathrm{d}\pi^{\star}$$

I will prove something on *one* of the minimizers of the linearization. Tightness of relaxation implies these are also minimizers of GW.

 twist conditions for our linearized costs? ⇒ not always, need something a bit more general.

2. Monge maps for GW

2.1. A key lemma

"Let $\mu, \nu \in \mathcal{P}(E)$.

"Let $\mu, \nu \in \mathcal{P}(E)$. If we can send μ and ν in a space B by a function φ ,

A key lemma Intuition

"Let $\mu, \nu \in \mathcal{P}(E)$. If we can send μ and ν in a space B by a function φ , *s.t.* $c(x, y) = \tilde{c}(\varphi(x), \varphi(y)) \quad \text{for all } x, y \in E$

with \tilde{c} a *twisted* cost on B,

A key lemma Intuition

"Let $\mu, \nu \in \mathcal{P}(E)$. If we can send μ and ν in a space B by a function φ , s.t.

$$c(x,y) = \tilde{c}(\varphi(x),\varphi(y))$$
 for all $x,y \in E$

with \tilde{c} a *twisted* cost on *B*, then we can construct an optimal map between μ and ν ."

A key lemma Statement

Theorem: existence of a Monge map, inner product cost

Let E_0 be a measurable space and B_0 and F be complete Riemannian manifolds. Let $\mu, \nu \in \mathcal{P}(E_0)$ with *compact support*. Assume that there exists a set $E \subset E_0$ s.t. $\mu(E) = 1$ and that there exists a measurable map $\Phi : E \to B_0 \times F$ that is injective and whose inverse on its image is measurable as well. Let $\varphi \triangleq p_B \circ \Phi : E \to B_0$. Let $c : E_0 \times E_0 \to \mathbb{R}$ and suppose that there exists a *twisted* $\tilde{c} : B_0 \times B_0 \to \mathbb{R}$ s.t.

$c(x,y) = \tilde{c}(\varphi(x),\varphi(y))$ for all $x,y \in E_0$.

Assume that $\varphi_{\#}\mu \ll \mathcal{L}_{B_0}$ and let thus t_B denote the unique Monge map between $\varphi_{\#}\mu$ and $\varphi_{\#}\nu$ for this cost. Suppose that there exists a disintegration $((\Phi_{\#}\mu)_u)_u$ of $\Phi_{\#}\mu$ by p_B s.t. for $\varphi_{\#}\mu$ -a.e. u, $(\Phi_{\#}\mu)_u \ll \text{vol}_F$.

Then *there exists an optimal map* T between μ and ν for the cost c that can be decomposed as

$$\Phi \circ \mathcal{T} \circ \Phi^{-1}(u, v) = (t_B(u), t_F(u, v)) = \left(\underbrace{\tilde{c} - \exp_u(\nabla f(u))}_{\in B}, \underbrace{\exp_v(\nabla g_u(v))}_{\in \text{ fiber}}\right),$$

with $f: B_0 \to \mathbb{R}$ \tilde{c} -convex and $g_u: F \to \mathbb{R}$ $d_F^2/2$ -convex for $\varphi_{\#}\mu$ -a.e. u.

- 1. transport in B: c satisfies (Twist) on B;
- 2. *transport the fibers:* choose a map for each couple of fibers $(\mu_u, \nu_{t_B(u)})$
- is T(u,x) = T_u(x) measurable? need theorem! adaptation of [?] to the manifold setting

Take-home message: $c(x, y) = \tilde{c}(\varphi(x), \varphi(y))$ with \tilde{c} twisted \implies map

2. Monge maps for GW

2.2. Application: inner product cost

Let's work on (GW inner prod):

$$\min_{\pi \in \Pi(\mu,\nu)} \iint \left| \langle x, x' \rangle - \langle y, y' \rangle \right|^2 d\pi(x,y) d\pi(x',y') \quad (GW \text{ inner prod})$$

$$\iff \min_{\pi \in \Pi(\mu,\nu)} \iint - \langle x, x' \rangle \langle y, y' \rangle d\pi(x,y) d\pi(x',y')$$

 $\implies \text{OT problem with}$ $c(x, y) = -\int \langle x, x' \rangle \langle y, y' \rangle \, \mathrm{d}\pi^*(x', y') = \cdots = -\langle M^*x, y \rangle$

where
$$M^* \triangleq \int y' x'^\top d\pi^*(x', y') \in \mathbb{R}^{n \times n}$$

rk <i>M*</i>	= <i>n</i>	$\leq n-1$
twist	\checkmark	•
subtwist	\checkmark	
<i>m</i> -twist, $m \ge 2$	\checkmark	

Inner product cost Proof

1. *a simplification:* up to SVD, suppose M^* is a diagonal matrix of singular values:

$$M^{\star} = \begin{pmatrix} \sigma_1 & & \\ & \sigma_h & \\ & & 0 \\ & & & 0 \end{pmatrix}$$

2. rephrase the cost:

$$\begin{split} c(x,y) &= -\langle M^* x, y \rangle \\ &= -\sum_{i=1}^h \sigma_i x_i y_i \\ &\triangleq \tilde{c}(p(x), p(y)) \quad \text{ with } p \text{ the orthogonal projection on } \mathbb{R}^h. \end{split}$$

- 3. apply key lemma!
 - B is \mathbb{R}^h
 - fibers are \mathbb{R}^{n-h}
 - \widetilde{c} is twisted on \mathbb{R}^h
- \Rightarrow optimal map + structure!

for
$$x = (u, v) \in \mathbb{R}^h \times \mathbb{R}^{n-h}$$
, $T(u, v) = (\nabla f \circ M^*(u), \nabla g_u(v))$.

2. Monge maps for GW

2.3. Application: quadratic cost

Similarly, we work on (GW quadratic) and relax to a classical OT problem with

$$c(x,y) = -|x|^2|y|^2 - 4\langle M^*x, y\rangle.$$

rk <i>M</i> *	= n	= n - 1	$\leq n-2$
twist	•		•
subtwist	\checkmark		
2-twist	\checkmark	\checkmark	•

Similarly, we work on (GW quadratic) and relax to a classical OT problem with

$$c(x,y) = -|x|^2|y|^2 - 4\langle M^*x, y\rangle.$$

rk <i>M*</i>	= n	= n - 1	$\leq n-2$
twist	•		
subtwist	\checkmark		
2-twist	\checkmark	\checkmark	
	\downarrow	\Downarrow	\downarrow
	map/anti-map and bimap	bimap	

Theorem: quadratic cost

Let $\mu, \nu \in \mathcal{P}(\mathbb{R}^n)$ of compact support. Suppose that μ has a density. Let π^* be an optimal plan and $M^* \triangleq \int y' x'^\top d\pi^*(x', y')$. Then:

- \checkmark if rk $M^* = n$, there is an optimal *map/anti-map*,
- \checkmark if rk $M^* = n 1$, there is an optimal *bimap*,

(!!) if $rk M^* \leq n - 2$, there is an optimal map!

1. a simplification: up to SVD, M^* is diagonal:

$$M^{\star} = \begin{pmatrix} \sigma_1 & & \\ & \sigma_h & \\ & & 0 \end{pmatrix}. \quad \text{We note } x = (\underbrace{x_1, \dots, x_h}_{x_H}, \underbrace{x_{h+1}, \dots, x_n}_{x_{\perp}}).$$

2. rephrase the cost:

$$\begin{aligned} -c(x,y) &= |x|^2 |y|^2 + 4 \langle M^* x, y \rangle \\ &= |x_H|^2 |y_H|^2 + |x_H|^2 |y_\perp|^2 + |x_\perp|^2 |y_H|^2 + |x_\perp|^2 |y_\perp|^2 + 4 \langle \tilde{M} x_H, y_H \rangle \\ &= |x_H|^2 |y_H|^2 + |x_H|^2 n(y) + n(x) |y_H|^2 + n(x) n(y) + 4 \langle \tilde{M} x_H, y_H \rangle \\ &\triangleq -\tilde{c}(\varphi(x), \varphi(y)), \end{aligned}$$

with $n: x \mapsto |x_{\perp}|^2$ and $\varphi: x \mapsto (x_H, |x_{\perp}|^2)$.

- 3. apply key lemma!
 - B is $\mathbb{R}^h \times \mathbb{R}^+$
 - the fibers are spheres \mathbb{S}^{n-h-1}
 - \tilde{c} is twisted on $\mathbb{R}^h\times\mathbb{R}^+$
- \Rightarrow optimal map + structure!

for $x \approx (u, v) \in \mathbb{R}^h \times \mathbb{R}^h \times \mathbb{S}^{n-h-1}$, $T(u, v) = (\tilde{c} - \exp_u(\nabla f(u)), \exp_v(\nabla g_u(v)))$.

3. Summary & discussion

Summary & discussion

Contributions

- 1. Thm: always a *map* for (GW inner prod)
- 2. **Thm:** a *map*, *bimap* or *map/anti-map* for (GW quadratic)
- 3. Numerical Conj: this second claim is tight
- 4. (**Thm:** monotone rearrangement optimal for (GW quadratic) between measures composed of *two distant parts*): global dominates the local.

Some questions:

- quadratic cost:
 - better understanding of the 1d case.
- A (motivated) cost with tractable GW and structured maps?