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The Vlasov-Monge-Ampere system
The VMA system in the space domain T writes for (t,x,v) € R, x TY x RY

Oif(t,x,v) + v - Vif(t,x,v) — Vyp(t,x) - V,f(t,x,v) =0,
det(Id + D2y(t, x)) = /f(t,x, v)dv,

f(t,x, v)|t=0 = fo(x, v).

where f >0 and [[ f(t,x,v)dxdv =1.
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for small variations of density, this is close to

Oef(t,x,v) + v - Vif(t,x,v) — Vxp(t, x) - V, f(t,x,v) =0,

Ax@(tx) = /f(t,X, V)dV - 17

f(t,x, v)|t=0 = fo(x, v).
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Zeldovich approximation

In the context of the evolution of the density of matter in an Einstein-de Sitter
Universe, this change from the Poisson equation to the Monge-Ampére equation
is an approximation for which the Zeldovich approximation becomes exact.

3
Ov+ (v-V)v= —Z(v + V),
Op + div(pv) =0,

1+ tAp =p.

"Reconstruction of the early Universe”
[Frisch, Matarrese, Mohayaee, Sobolevskii 2002]

[Brenier, Frisch, Hénon, Loeper, Matarrese, Mohayaee, Sobolevskii 2003]
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An optimal transport interpretation

The characteristics of the VMA system are the solutions of the ODE
Xt = —VXQO(t,Xt),

where T; : x >—> x + Vxo(t, x) is the optimal map in the quadratic OT problem
sending p(t,-) = [ f(t,-, v)dv onto the Lebesgue measure.
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An optimal transport interpretation

The characteristics of the VMA system are the solutions of the ODE
Xt = —VXQO(t,Xt),

where T; : x >—> x + Vxo(t, x) is the optimal map in the quadratic OT problem
sending p(t,-) = [ f(t,-, v)dv onto the Lebesgue measure.

Therefore, the whole system can be reformulated as follows:

Xe(x,v) = Xe(x, v) = Te(Xel(x, v)),
Xo(x,v) = x, Xo(x, v)=v,
T: sends optimally X;xfy onto Leb.

(The phase-space density f is given from X by f(t,-) = (X¢, Xt)xfo.)
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A discrete version

From now on, we work on RY, and we replace Leb by and empirical measure

1 N
NZ(S‘;” 317...,3N6Rd.
i=1
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A discrete version

From now on, we work on RY, and we replace Leb by and empirical measure

L
NZ(S‘;” 317...,3N6Rd.
i=1
We are interested in the following dynamical system for N particles xi, ..., xy

N N
Vi, 5i(t) = x(t) — To(xi(t),  where %Z(sﬁm A ;25
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We reformulate this as:
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A discrete version

From now on, we work on RY, and we replace Leb by and empirical measure

N
1
NZ(S‘;” 317...,3N6Rd.
i=1
We are interested in the following dynamical system for N particles xi, ..., xy

N N
Vi, %0 =x(0 - T, where )by & /1/25
= xi(t) = a5 (i), where agr(iy = Te(xi(1)). )
We reformulate this as:
Xe = (xa(t),...,xn(t)) andforall o € Sy, A7 = (ay1),-- -+ a0(n)),

)"<t :thAa:.

‘This is well defined only when the Monge problem has a unique sol. ‘
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Dealing with singularities: looking for convexity

For X = (x1,...,xn) € (RY)V, let us call

N N 2
. 1YL e
F(X)—‘W2< Za/NZifo)—‘JEg‘Nz’

f(X):= F(X)+ %(|X|2 + AR = max A7 - X.
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At a point X where the Monge problem has a unique solution given by o*,
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Xi = —VF(X;) = X — VF(X,).
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Dealing with singularities: looking for convexity

For X = (x1,...,xn) € (RY)V, let us call

N N 2
. 1YL e
F(X)—‘W2< Za/NZil‘SXf)—‘;Eg‘Nz’

f(X):= F(X) + 1(|X|2 +|A]?) = max A7 - X.
2 [ ASISIN

At a point X where the Monge problem has a unique solution given by o*,
VF(X)=—(X—-A"), VFf(X)=A"".
and our discrete model writes formally
Xi = —VF(X;) = X — VF(X,).
But f is convex and F is —1-convex! [Ambrosio, Gangbo '08] restated MAG as

Xi € —OF(X;) or X;— X: € 9f(Xy).
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Where our derivation leads

Our approach leads to a description of the system in the form of a least action
principle. Due to our formal ODE, one could expect as an action

/: {;|Xt|2 - F(Xt)}dt.
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where V£ (X) is the vector of smallest length in 9f(X).
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Our approach leads to a description of the system in the form of a least action
principle. Due to our formal ODE, one could expect as an action

/: {;p'q? - F(Xt)}dt.

Instead, it selects the following very close one
b1 1 =
/ {|xt2 + | Xe — Vf(Xt)|2} dt,
6 L2 2

where V£ (X) is the vector of smallest length in 9f(X).These actions are linked
because for "good" points X,

1 - 1
F(X) = f§|x — A2 = fi\x — VF(X)°.
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Where our derivation leads

Our approach leads to a description of the system in the form of a least action
principle. Due to our formal ODE, one could expect as an action

/: {;p'q? - F(Xt)}dt.

Instead, it selects the following very close one
b1 1 =
/ {|xt2 + | Xe — Vf(Xt)|2} dt,
6 L2 2

where V£ (X) is the vector of smallest length in 9f(X).These actions are linked
because for "good" points X,

1 - 1
F(X) = f§|x — A2 = fi\x — VF(X)°.

But for "bad" points, 2|X — V£(X)[?> < —F(X), so they are favoured: when
d =1, the model presents sticky collisions! (See [Brenier '10].)
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Our derivation: perturbation of a " pilot wave” ODE

We start with the density p°(t,-) in (RY)V at time t > 0 of N indistinguishable
Brownian particles of diff £ > 0, initially in a1,...,ay up to permutation:

X =A7 A”|2
P (t, X) = exp (
NI\ 2ret N ggN
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We start with the density p°(t,-) in (RY)V at time t > 0 of N indistinguishable

Brownian particles of diff £ > 0, initially in a1,...,ay up to permutation:
X—A7" A"I2
Pt X) = ———x exp (
NI\ 2ret g;N

Following the idea of pilot waves by Louis de Broglie in the context of quantum
mechanics, we see this density as the solution of the continuity equation

Orp® + div(p®v®) =0,

ve(t, X) = —%V log p°(t, X)
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X - A7
E A"exp( >
£ 1 leASIGIY et
ve(t,X) = —=Vlogp(t,X) = — | X —
2 2t Z x X - A°
P et
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1 A% . X
=5 (X = Vf(t, X)), where f.(t,x):=cetlog GZ@; exp < " ) .
ceGy
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Our derivation: perturbation of a " pilot wave” ODE

Now, the idea is to perturb the characteristic ODE of this continuity equation as
dX{" = ve(t, XP") dt + na(t) dB,

being (B;) a standard Brownian motion and « a smooth function.
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Now, the idea is to perturb the characteristic ODE of this continuity equation as
dX7" = ve(t, X") dt + na(t) dBy,
being (B;) a standard Brownian motion and « a smooth function.
Now, the spirit of the result is as follows:
When « is well chosen, n — 0 and then ¢ — 0, up to a change of
time, the solutions of this SDE starting from P at time ty > 0 and

which happen to be close to Q for a further time t; > ty are close to
minimizers the action previously described.
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Our derivation: perturbation of a " pilot wave” ODE

Now, the idea is to perturb the characteristic ODE of this continuity equation as
dX{" = ve(t, XP") dt + na(t) dB,
being (B;) a standard Brownian motion and « a smooth function.

Now, the spirit of the result is as follows:

When « is well chosen, n — 0 and then ¢ — 0, up to a change of
time, the solutions of this SDE starting from P at time ty > 0 and
which happen to be close to Q for a further time t; > ty are close to
minimizers the action previously described.

From now on, we fix 0 < ty < t; and P € (RY)V, and we call e,y the law of
our SDE starting from P at time ty, up to time t;. Finally, we choose a final
point Q € (RY)N.
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Limit » — O: Freidlin-Wentzell large deviation principle

Theorem
For fixed ¢ > 0 and n — 0, the family of laws (p. ) satisfies the LDP on
CO([to, ta]; (RY)N) with good rate function defined for all X = (X)rety,t,] by:

1/ 1. ,
f/ —— | Xe — ve(t, Xp)|?dt, if X € HY([to, t1]; (RY)Y)
to

2
2 )y oft) and X, = P,

+ o0, else.
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Limit » — O: Freidlin-Wentzell large deviation principle

Theorem
For fixed ¢ > 0 and n — 0, the family of laws (p. ) satisfies the LDP on
CO([to, ta]; (RY)N) with good rate function defined for all X = (X)rety,t,] by:

1/ 1 . .

5/ w|Xt — Va(t,Xt)‘zdt, IfX S Hl([to, tl], (Rd)N)
fo and X, = P,

+ o0, else.

In particular, the family of conditioned laws (pic ,,(-| Xy, = Q)) admit limit
points, and these limit points only charge minimizers of the action

I ,
5/ W'Xt —vo(t, Xp) P dt, if X € HY([to, t1]; (RY)V)
Le: & — o Xy, = P and X, = Q,

+ 00, else.
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Limit € — 0: I'-convergence

Theorem
As e — 0, we have the family of actions (L.) ['-converges towards

X, — V(X)) [*

X, — o dt, if X € HY([to, t:]; (RY)Y),

1 /tl 1
2 2
L: X +— 2 to O‘(t) Xt0 = P and th =Q,

+ o0, else.
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Limit € — 0: I'-convergence

Theorem
As e — 0, we have the family of actions (L.) ['-converges towards

1/ 1 |, Xe— VX))

L P 2RO e
L: X +— to a() Xtozpanan:Q,

+ o0, else.

"Proof".
We have

1 A% - X
V(6.X) = o2 (X = VE(£, X)) where ff(t’x):“bg;ex"( =)
g N

But for all t > 0,
f-(t, X) — f(X).
e—0

See the last slide for the reason we find the extended gradient V. O
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Change of time, choice of o and conclusion

Given an X, we define Y : 0 — Yy := Xexp(2g), Oy := |°th° and 0; := 'c’thl. We
find that

1 (% 1
L(X) = 2 /90 2exp(29)a(eXP(29))

S| Yo — (Yo — V£(Ye)) do.
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minimizes
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Change of time, choice of o and conclusion

Given an X, we define Y : 0 — Yy := Xexp(w), Oy := |°th° and 0; := 'c’thl. We
find that

b1 . —
LX) = % /90 2exp(29)0il(exli>(29))2 Yo = (Yo = Vi( Yo))|2 a0

Therefore, choosing «(t) := ﬁ we find that X minimizes L if and only if Y
minimizes
1

01 . J—
5/ Yo — (Yo — VF£(Ye))[* do.
0o

But this action is equal to

/91 | Yo|? N | Yo — VF(Yp))I?
0 2 2

dé.

0

up to a term only depending on the endpoints P and Q, so we are done.
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Why the extended gradient?

Up to some manipulation, we use this result, stated here in a Hilbert space.

Theorem (Ambrosio, Baradat, Brenier '21)

Let H be a Hilbert space. If (f,) is a family of uniformly A-convex function on
H, A € R, and if f, — f in the sense of Mosco convergence. If finally

sup |V (x;)| < +oo, i=0,1.

Then, calling EP the endpoint constraints corresponding to xg,x1 € H,

1 1{\>'<|2+|W(X)|2}dt+EP T, 1 1{\x|2+|$f(X)|2}dr+EP
2 0 t n t n*)+002 0 t t

in the topology of C°([0,1]; H).
See also [Monsaingeon, Tamanini, Vorotnikov '20] for similar results in the

Wasserstein space.
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Why the extended gradient?

Up to some manipulation, we use this result, stated here in a Hilbert space.

Theorem (Ambrosio, Baradat, Brenier '21)

Let H be a Hilbert space. If (f,) is a family of uniformly A-convex function on
H, A € R, and if f, — f in the sense of Mosco convergence. If finally

sup |V (x;)| < +oo, i=0,1.

Then, calling EP the endpoint constraints corresponding to xg,x1 € H,

1 1{\>'<|2+|W(X)|2}dt+EP T, 1 1{\x|2+|$f(X)|2}dr+EP
2 0 t n t n*)+002 0 t t

in the topology of C°([0,1]; H).

See also [Monsaingeon, Tamanini, Vorotnikov '20] for similar results in the
Wasserstein space.

Thank youl!
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