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The Vlasov-Monge-Ampère system
The VMA system in the space domain Td writes for (t, x , v) ∈ R+ × Td × Rd


∂t f (t, x , v) + v · ∇x f (t, x , v)−∇xϕ(t, x) · ∇v f (t, x , v) = 0,

det(Id + D2
xϕ(t, x)) =

∫
f (t, x , v) dv ,

f (t, x , v)|t=0 = f0(x , v).

where f ≥ 0 and
∫∫

f (t, x , v) dx dv = 1.

As

det(Id + D2
xϕ(t, x)) ≈ 1 + tr(D2

xϕ(t, x)) = 1 + ∆xϕ(t, x),

for small variations of density, this is close to
∂t f (t, x , v) + v · ∇x f (t, x , v)−∇xϕ(t, x) · ∇v f (t, x , v) = 0,

∆xϕ(t, x) =

∫
f (t, x , v) dv − 1,

f (t, x , v)|t=0 = f0(x , v).
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Zeldovich approximation

In the context of the evolution of the density of matter in an Einstein-de Sitter
Universe, this change from the Poisson equation to the Monge-Ampère equation
is an approximation for which the Zeldovich approximation becomes exact.

∂tv + (v · ∇)v = − 3

2t
(v +∇ϕ),

∂tρ+ div(ρv) = 0,

1 + t∆ϕ = ρ.

”Reconstruction of the early Universe”

[Frisch, Matarrese, Mohayaee, Sobolevskii 2002]

[Brenier, Frisch, Hénon, Loeper, Matarrese, Mohayaee, Sobolevskii 2003]
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An optimal transport interpretation

The characteristics of the VMA system are the solutions of the ODE

Ẍt = −∇xϕ(t,Xt),

where Tt : x 7→ x +∇xϕ(t, x) is the optimal map in the quadratic OT problem
sending ρ(t, ·) =

∫
f (t, ·, v) dv onto the Lebesgue measure.

Therefore, the whole system can be reformulated as follows:
Ẍt(x , v) = Xt(x , v)− Tt(Xt(x , v)),

X0(x , v) = x , Ẋ0(x , v) = v ,

Tt sends optimally Xt#f0 onto Leb.

(The phase-space density f is given from X by f (t, ·) = (Xt , Ẋt)#f0.)
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4/13



A discrete version
From now on, we work on Rd , and we replace Leb by and empirical measure

1

N

N∑
i=1

δai , a1, . . . , aN ∈ Rd .

We are interested in the following dynamical system for N particles x1, . . . , xN

∀i , ẍi (t) = xi (t)− Tt(xi (t)), where
1

N

N∑
i=1

δxi (t)
Tt 

1

N

N∑
i=1

δai

= xi (t)− aσ∗
t (i), where aσ∗

t (i) = Tt(xi (t)).

We reformulate this as:

Xt = (x1(t), . . . , xN(t)) and for all σ ∈ SN , Aσ = (aσ(1), . . . , aσ(N)),

Ẍt = Xt − Aσ
∗
t .

This is well defined only when the Monge problem has a unique sol.
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Dealing with singularities: looking for convexity

For X = (x1, . . . , xN) ∈ (Rd)N , let us call

F (X ) := −N

2
W 2

2

(
1

N

N∑
i=1

δai ,
1

N

N∑
i=1

δxi

)
= − min

σ∈SN

∣∣X − Aσ
∣∣2

2
,

f (X ) := F (X ) +
1

2
(|X |2 + |A|2) = max

σ∈SN

Aσ · X .

At a point X where the Monge problem has a unique solution given by σ∗,

∇F (X ) = −(X − Aσ
∗
), ∇f (X ) = Aσ

∗
.

and our discrete model writes formally

Ẍt = −∇F (Xt) = Xt −∇f (Xt).

But f is convex and F is −1-convex! [Ambrosio, Gangbo ’08] restated MAG as

Ẍt ∈ −∂F (Xt) or Xt − Ẍt ∈ ∂f (Xt).
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Where our derivation leads

Our approach leads to a description of the system in the form of a least action
principle. Due to our formal ODE, one could expect as an action∫ t1

t0

{
1

2
|Ẋt |2 − F (Xt)

}
dt.

Instead, it selects the following very close one∫ t1

t0

{
1

2
|Ẋt |2 +

1

2
|Xt −∇f (Xt)|2

}
dt,

where ∇f (X ) is the vector of smallest length in ∂f (X ).These actions are linked
because for ”good” points X ,

F (X ) = −1

2
|X − Aσ

∗
|2 = −1

2
|X −∇f (X )|2.

But for ”bad” points, 1
2 |X −∇f (X )|2 < −F (X ), so they are favoured: when

d = 1, the model presents sticky collisions! (See [Brenier ’10].)
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|Ẋt |2 − F (Xt)

}
dt.

Instead, it selects the following very close one∫ t1

t0

{
1

2
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Our derivation: perturbation of a ”pilot wave” ODE
We start with the density ρε(t, ·) in (Rd)N at time t > 0 of N indistinguishable
Brownian particles of diff ε > 0, initially in a1, . . . , aN up to permutation:

ρε(t,X ) =
1

N!
√

2πεt
Nd

∑
σ∈SN

exp

(
−|X − Aσ|2

2εt

)
.

Following the idea of pilot waves by Louis de Broglie in the context of quantum
mechanics, we see this density as the solution of the continuity equation

∂tρ
ε + div(ρεvε) = 0,

vε(t,X ) := −ε
2
∇ log ρε(t,X )

=
1

2t

X −

∑
σ∈SN

Aσ exp

(
X · Aσ

εt

)
∑
σ∈SN

exp

(
X · Aσ

εt

)


=
1

2t
(X −∇fε(t,X )) , where fε(t, x) := εt log

∑
σ∈SN

exp

(
Aσ · X
εt

)
.
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Our derivation: perturbation of a ”pilot wave” ODE

Now, the idea is to perturb the characteristic ODE of this continuity equation as

dX ε,η
t = vε(t,X ε,η

t ) dt + ηα(t) dBt ,

being (Bt) a standard Brownian motion and α a smooth function.

Now, the spirit of the result is as follows:

When α is well chosen, η → 0 and then ε → 0, up to a change of
time, the solutions of this SDE starting from P at time t0 > 0 and
which happen to be close to Q for a further time t1 > t0 are close to
minimizers the action previously described.

From now on, we fix 0 < t0 < t1 and P ∈ (Rd)N , and we call µε,η the law of
our SDE starting from P at time t0, up to time t1. Finally, we choose a final
point Q ∈ (Rd)N .
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Limit η → 0: Freidlin-Wentzell large deviation principle

Theorem
For fixed ε > 0 and η → 0, the family of laws (µε,η) satisfies the LDP on
C 0([t0, t1]; (Rd)N) with good rate function defined for all X = (Xt)t∈[t0,t1] by:

1

2

∫ t1

t0

1

α(t)2
|Ẋt − vε(t,Xt)|2 dt, if X ∈ H1([t0, t1]; (Rd)N)

and Xt0 = P,

+∞, else.

In particular, the family of conditioned laws (µε,η(·|Xt1 = Q)) admit limit
points, and these limit points only charge minimizers of the action

Lε : X 7→


1

2

∫ t1

t0

1

α(t)2
|Ẋt − vε(t,Xt)|2 dt, if X ∈ H1([t0, t1]; (Rd)N)

Xt0 = P and Xt1 = Q,

+∞, else.
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Limit ε→ 0: Γ-convergence

Theorem
As ε→ 0, we have the family of actions (Lε) Γ-converges towards

L : X 7→


1

2

∫ t1

t0

1

α(t)2

∣∣∣∣Ẋt −
Xt −∇f (Xt)

2t

∣∣∣∣2 dt, if X ∈ H1([t0, t1]; (Rd)N),
Xt0 = P and Xt1 = Q,

+∞, else.

”Proof”.
We have

vε(t,X ) =
1

2t
(X −∇fε(t,X )) where fε(t,X ) = εt log

∑
σ∈SN

exp

(
Aσ · X
εt

)
.

But for all t > 0,
fε(t,X ) −→

ε→0
f (X ).

See the last slide for the reason we find the extended gradient ∇.
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Change of time, choice of α and conclusion

Given an X , we define Y : θ 7→ Yθ := Xexp(2θ), θ0 := log t0

2 and θ1 := log t1

2 . We
find that

L(X ) =
1

2

∫ θ1

θ0

1

2 exp(2θ)α(exp(2θ))2
|Ẏθ − (Yθ −∇f (Yθ))|2 dθ.

Therefore, choosing α(t) := 1√
2t

, we find that X minimizes L if and only if Y
minimizes

1

2

∫ θ1

θ0

|Ẏθ − (Yθ −∇f (Yθ))|2 dθ.

But this action is equal to∫ θ1

θ0

|Ẏθ|2

2
+
|Yθ −∇f (Yθ))|2

2
dθ.

up to a term only depending on the endpoints P and Q, so we are done.
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Why the extended gradient?
Up to some manipulation, we use this result, stated here in a Hilbert space.

Theorem (Ambrosio, Baradat, Brenier ’21)
Let H be a Hilbert space. If (fn) is a family of uniformly λ-convex function on
H, λ ∈ R, and if fn → f in the sense of Mosco convergence. If finally

sup
n
|∇fn(xi )| < +∞, i = 0, 1.

Then, calling EP the endpoint constraints corresponding to x0, x1 ∈ H,

1

2

∫ 1

0

{
|Ẋt |2 + |∇fn(Xt)|2

}
dt + EP

Γ−→
n→+∞

1

2

∫ 1

0

{
|Ẋt |2 + |∇f (Xt)|2

}
dt + EP

in the topology of C 0([0, 1];H).

See also [Monsaingeon, Tamanini, Vorotnikov ’20] for similar results in the
Wasserstein space.

Thank you!
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